

Qualcomm Technologies, Inc.

Qualcomm Snapdragon and Adreno are products of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are
products of Qualcomm Technologies, Inc. or its subsidiaries.

Qualcomm, Snapdragon, and Adreno are trademarks of Qualcomm Incorporated, registered in the United States and other
countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S.
and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121

U.S.A.

© 2017 Qualcomm Technologies, Inc. All rights reserved.

Qualcomm® Snapdragon™ Mobile Platform
OpenCL General Programming and
Optimization

80-NB295-11 A

November 3, 2017

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 2

Revision history

Revision Date Description

A November 2017 Initial release

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 3

Contents

1 Introduction .. 9
1.1 Purpose.. 9
1.2 Conventions .. 9
1.3 Technical assistance .. 9

2 Introduction to OpenCL .. 10
2.1 OpenCL background and overview .. 10
2.2 OpenCL on mobile .. 11
2.3 OpenCL standard .. 11

2.3.1 OpenCL API functions .. 11
2.3.2 OpenCL C language .. 12
2.3.3 OpenCL versions and profiles ... 12

2.4 OpenCL portability and backward compatibility .. 13
2.4.1 Program portability .. 13
2.4.2 Performance portability ... 13
2.4.3 Backward compatibility ... 13

3 OpenCL on Snapdragon ... 14
3.1 OpenCL on Snapdragon .. 14
3.2 Adreno GPU architecture .. 15

3.2.1 Adreno high-level architecture for OpenCL .. 15
3.2.2 Waves and fibers .. 16
3.2.3 Latency hiding ... 16
3.2.4 Workgroup assignment .. 17

3.3 Adreno A3x, A4x, and A5x differences on OpenCL .. 18
3.3.1 L2 cache ... 18
3.3.2 Local memory .. 18

3.4 Context switching between graphics and compute workload 19
3.4.1 Context switch ... 19
3.4.2 Limit kernel/workgroup execution time on GPU .. 19

3.5 OpenCL standard related improvement .. 19
3.6 OpenCL extensions ... 20

4 Adreno OpenCL application development .. 21
4.1 OpenCL application development on Android ... 21
4.2 Debugging tools .. 22
4.3 Snapdragon Profiler .. 22
4.4 Performance profiling ... 22

4.4.1 CPU timer .. 22

Qualcomm® Snapdragon OpenCL General Programming and Optimization Contents

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

4.4.2 GPU timer .. 23
4.4.3 GPU timer vs. CPU timer .. 24
4.4.4 Performance mode ... 24
4.4.5 GPU frequency controls .. 25

5 Overview of performance optimizations .. 26
5.1 Performance portability .. 26
5.2 High-level view of optimization ... 26
5.3 Initial evaluation for OpenCL porting .. 27
5.4 Port CPU code to OpenCL GPU ... 27
5.5 Parallelize GPU and CPU workloads ... 28
5.6 Bottleneck analysis ... 28

5.6.1 Identify bottlenecks ... 28
5.6.2 Resolve bottlenecks ... 28

5.7 API level performance optimization ... 29
5.7.1 Proper arrangement of API function calls ... 29
5.7.2 Use event-driven pipeline .. 30
5.7.3 Kernel loading and building .. 30
5.7.4 Use in-order command queues .. 30

6 Workgroup size performance optimization ... 31
6.1 Obtain the maximum workgroup size ... 31
6.2 Required and preferred workgroup size .. 31
6.3 Factors affecting the maximum workgroup size ... 32
6.4 Kernels without barrier ... 33
6.5 Workgroup size tuning .. 33

6.5.1 Avoid using default workgroup size .. 33
6.5.2 Large workgroup size, better performance? .. 33
6.5.3 Fixed vs. dynamic workgroup size .. 33
6.5.4 One vs. two vs. three-dimensional (1D/2D/3D) workgroup 34

6.6 Other topics on workgroup size .. 34
6.6.1 Global work size and padding ... 34
6.6.2 Brute force search .. 34
6.6.3 Avoid uneven workload across workgroups .. 34
6.6.4 Workgroup synchronization .. 35

7 Memory performance optimization .. 36
7.1 OpenCL memories in Adreno GPUs .. 36

7.1.1 Local memory .. 37
7.1.2 Constant memory ... 38
7.1.3 Private memory .. 39
7.1.4 Global memory .. 39

7.2 Optimal memory load/store .. 42
7.2.1 Coalesced memory load/store .. 42
7.2.2 Vectorized load/store ... 42
7.2.3 Optimal data type ... 43
7.2.4 16-bit floating (half) vs. 32-bit floating ... 43

7.3 Atomic functions ... 43

Qualcomm® Snapdragon OpenCL General Programming and Optimization Contents

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

7.4 Zero copy .. 44
7.4.1 Use map over copy .. 44
7.4.2 Avoid memory copy for objects allocated not by OpenCL 45

7.5 Improve cache usage ... 45
7.6 CPU cache operations ... 46
7.7 Use of SVM .. 46
7.8 Best practices to reduce power/energy consumption .. 47

8 Kernel performance optimization ... 48
8.1 Kernel fusion or splitting .. 48
8.2 Compiler options ... 48
8.3 Conformant vs. fast vs. vs. native math functions .. 49
8.4 Loop unrolling .. 50
8.5 Avoid branch divergence .. 51
8.6 Handle image boundaries .. 51
8.7 32-bit vs. 64-bit GPU memory access .. 51
8.8 Avoid use of size_t ... 52
8.9 Generic memory address space ... 52
8.10 Miscellaneous ... 52

9 OpenCL optimization case studies .. 54
9.1 Application sample code ... 54

9.1.1 Improve algorithm ... 54
9.1.2 Vectorized load/store ... 56
9.1.3 Use image instead of buffer ... 57

9.2 Epsilon filter ... 57
9.2.1 Initial implementation .. 58
9.2.2 Data pack optimization .. 58
9.2.3 Vectorized load/store optimization .. 59
9.2.4 Further increase work load per work item ... 60
9.2.5 Use local memory optimization ... 62
9.2.6 Branch operations optimization ... 63
9.2.7 Summary .. 63

9.3 Sobel filter ... 64
9.3.1 Algorithm optimization ... 64
9.3.2 Data pack optimization .. 65
9.3.3 Vectorized load/store optimization .. 66
9.3.4 Performance and summary .. 66

9.4 Summary ... 67

10 Summary .. 68

A How to enable performance mode .. 69
A.1 Adreno A3x GPU ... 69

A.1.1 CPU settings ... 69
A.1.2 GPU settings: .. 69

A.2 Adreno A4x GPU and Adreno A5x GPU .. 70

Qualcomm® Snapdragon OpenCL General Programming and Optimization Contents

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 6

B References ... 72
B.1 Related documents ... 72
B.2 Acronyms and terms .. 72

Qualcomm® Snapdragon OpenCL General Programming and Optimization Contents

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

Figures

Figure 2-1 Heterogeneous system using OpenCL .. 10
Figure 3-1 High-level architecture of the Adreno A5x GPUs for OpenCL ... 15
Figure 3-2 An example of workgroup layout and dispatch in Adreno GPUs .. 17
Figure 3-3 An example of workgroup allocation to SPs .. 18
Figure 3-4 Illustration of coalesced vs. non-coalesced data load ... 19
Figure 4-1 Profiling flags for the clEnqueueNDRange call in Adreno GPUs 24
Figure 7-1 OpenCL conceptual memory hierarchy ... 36
Figure 8-1 Pictorial representation of divergence across two waves ... 51
Figure 9-1 Epsilon filter algorithm .. 58
Figure 9-2 Data pack using 16-bit half (fp16) data type .. 59
Figure 9-3 Filtering more pixels per work item ... 60
Figure 9-4 Process 8 pixels per work item ... 61
Figure 9-5 Process 16 pixels per work item ... 61
Figure 9-6 Using local memory for Epsilon filtering... 62
Figure 9-7 Two directional operations in Sobel filter .. 64
Figure 9-8 Sobel filter separability .. 64
Figure 9-9 Process one pixel per work item: load 3x3 pixels per kernel ... 65
Figure 9-10 Process 16x1 pixels: load 18x3 pixels .. 65
Figure 9-11 Process 16x2 pixels, load 18x4 pixels .. 65
Figure 9-12 Performance boost by using data pack and vectorized load/store .. 66

Qualcomm® Snapdragon OpenCL General Programming and Optimization Contents

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

Tables

Table 2-1 OpenCL platform layer functionality .. 11
Table 2-2 OpenCL run time layer functionality ... 12
Table 3-1 Adreno GPUs with OpenCL support ... 14
Table 3-2 Local memory performance summary ... 18
Table 3-3 Standard OpenCL features supported in Adreno GPUs .. 20
Table 4-1 Requirements of OpenCL development with Adreno GPUs ... 21
Table 7-1 OpenCL memory model in Adreno GPUs ... 37
Table 7-2 Buffer vs. image in Adreno GPUs ... 41
Table 7-3 Coalesced access support in Adreno GPUs ... 42
Table 8-1 Performance of OpenCL math functions (IEEE 754 conformant) .. 49
Table 8-2 Math function options based on precision/performance .. 50
Table 9-1 Performance from using local memory ... 62
Table 9-2 Summary of optimizations and performance ... 63
Table 9-3 Performance profiled for images with different resolutions .. 64
Table 9-4 Amount of data load/store for the three cases ... 65
Table 9-5 Number of loads and stores by using vectorized load/store .. 66

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 9

1 Introduction

1.1 Purpose
This document provides guidelines for OEMs, ISVs, and third-party developers for developing
and optimizing OpenCL applications on the Qualcomm® Snapdragon™ 400-, 600-, and
800-based mobile platforms and chipsets.

1.2 Conventions
Function declarations, function names, type declarations, attributes, and code samples appear in a
different font, for example, #include.

Code variables appear in angle brackets, for example, <number>.

Commands to be entered appear in a different font, for example, copy a:*.* b:.

Button and key names appear in bold font, for example, click Save or press Enter.

1.3 Technical assistance
For assistance or clarification on information in this document, submit a case to Qualcomm
Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/.

If you do not have access to the CDMATech Support website, register for access or send email to
support.cdmatech@qti.qualcomm.com.

https://createpoint.qti.qualcomm.com/
mailto:support.cdmatech@qti.qualcomm.com

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 10

2 Introduction to OpenCL

This chapter discusses key concepts of the OpenCL standard and seeks to convey fundamental
knowledge of OpenCL for application development on mobile platforms. To understand the
OpenCL standard in more detail, refer to The OpenCL Specification in References. Developers
with prior OpenCL knowledge and experience may skip this chapter and move to the next ones.

2.1 OpenCL background and overview
Developed and maintained by the Khronos group, OpenCL is an open and royalty free standard
for cross platform parallel programming in heterogeneous systems. It is designed in a way that
helps developers to exploit the massive computing power available in modern heterogeneous
system and greatly facilitate application development across platforms.

Qualcomm® AdrenoTM GPU series on Snapdragon platforms have been one of the earliest mobile
GPUs that fully support OpenCL.

OpenCL application

OpenCL
kernel

OpenCL
kernel

OpenCL
kernel

GPU FPGADSP Hardware
accelerator

CPU host

OpenCL
kernel

OpenCL
devices

OpenCL
kernels

Figure 2-1 Heterogeneous system using OpenCL

Figure 2-1 shows a typical heterogeneous system that supports OpenCL. In this system, there are
mainly three parts:

 A host CPU that is essentially a commander/master that manages and controls the
application.

 Multiple OpenCL devices, including GPU, DSP, FPGA, and a hardware accelerator.

 Kernel codes which are compiled and loaded by the host to OpenCL devices to execute.

Qualcomm Snapdragon OpenCL General Programming and Optimization Introduction to OpenCL

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 11

2.2 OpenCL on mobile
In recent years, the mobile system-on-chips (SOCs) have advanced significantly in computing
power, complexity, and functionality. GPUs in the mobile SOCs (mobile GPUs) are very
powerful and some of the top mobile GPUs reach the level of console/discrete GPUs in terms of
raw computing power.

This poses challenges for developers: how to effectively make use of the computing power and
quickly develop applications without knowing the low-level details of the GPUs, while
maintaining application compatibility across different SOCs?

Created to tackle these problems, OpenCL allows developers to easily leverage computing power
of mobile SOCs thanks to its cross-platform support. By using OpenCL, mobile SOCs can easily
enable advanced use cases in many fields, such as image/video processing, computer vision,
machine learning, etc.

In QTI, many use cases have been successfully accelerated using OpenCL with Adreno GPUs,
which demonstrated excellent performance, power, and portability. It is highly recommended to
use OpenCL with GPUs to accelerate their applications for Snapdragon SOCs.

2.3 OpenCL standard
The OpenCL standard primarily contains two components, the OpenCL runtime API and the
OpenCL C language. The API defines a set of functions running on host for resource
management, kernel dispatch and many other tasks, while the OpenCL C language is used to
write kernels that execute on OpenCL devices. The OpenCL API and OpenCL C language will be
reviewed in the following sections.

2.3.1 OpenCL API functions
The OpenCL API functions can be classified into two categories, platform layer and runtime.
Table 2-1 and Table 2-2 summarize the high-level functionality of the platform layer and the
runtime layer respectively.

Table 2-1 OpenCL platform layer functionality

Functionality Details

Discover the platform Is there an OpenCL platform available?

Discover OpenCL devices Is OpenCL available on GPU, CPU, or other devices

Query the OpenCL device information Global memory size, local memory size, maximum workgroup size,
etc.
Also check the extensions supported by the device.

Context Context management, such as context creation, retain, and
releases

Qualcomm Snapdragon OpenCL General Programming and Optimization Introduction to OpenCL

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

Table 2-2 OpenCL run time layer functionality

Functionality Details

Command queue management Used to communicate between device and host and can have
many queues in an application

Create and build OpenCL programs and
kernels

Is the kernel loaded and built successfully

Prepare data for kernel to execute,
create memory objects and initialize
them

What memory flag to use? Is there a way to do zero copy
memory object creation?

Create a kernel call and submit it to the
compute device

What workgroup size to use?

Synchronization Memory consistency
Resource management Deliver results and release resources

Understanding of the two layers are essential for writing OpenCL applications. Refer to
References for more details.

2.3.2 OpenCL C language
As a subset of the C99 standard, the OpenCL C language is used to write kernels that can be
compiled and executed on devices. Developers with C language programming experience can
easily get started with OpenCL C programming. However, it is crucial to understand the
differences between the C99 standard and the OpenCL C language to avoid common mistakes.
Here are the two key differences:

 Some features in C99 are not supported by the OpenCL C language due to hardware limits
and the OpenCL execution model. Examples are function pointers and dynamic memory
allocation (malloc/calloc, etc.).

 The OpenCL C language extends the C99 standard in several aspects so that it can better
serve its programming model and facilitate development, for example:

 It adds built-in functions to query the OpenCL kernel execution parameters.

 It has image load/store functions that can leverage the GPU hardware.

2.3.3 OpenCL versions and profiles
The current OpenCL v2.2 with the provisional SPIR-V 1.2 standard contains many improved
features. Refer to References for more details.

OpenCL defines two profiles, embedded profile and full profile. Embedded profile mainly targets
mobile devices, which typically have lower precision capability, and fewer hardware features
than traditional computing devices such as desktop GPUs. For a list of the key differences
between embedded and full profile, refer to References.

Qualcomm Snapdragon OpenCL General Programming and Optimization Introduction to OpenCL

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

2.4 OpenCL portability and backward compatibility

2.4.1 Program portability
As a strictly defined computing standard, OpenCL has good program portability. OpenCL
applications written for one vendor’s platform should run well on other vendors’ platforms, if
they are not using any vendor-proprietary or platform-specific extensions or features.

The program portability of OpenCL is ensured by Khronos’ certification program, which requires
OpenCL vendors to pass rigorous conformance tests on their platform before they claim it is
OpenCL “conformant.”

2.4.2 Performance portability
Unlike program portability, OpenCL performance is generally not portable. As a high-level
computing standard, the hardware implementation of OpenCL is vendor dependent. Different
hardware vendors have different device architectures and each one may have its advantages and
disadvantages. As a result, an OpenCL application written and optimized for one vendor’s
platform is unlikely to have the same performance as on other vendors’ platforms.

Even for the same vendors, different generations of their GPU hardware may vary in micro-
architectures and features, which could lead to noticeable performance differences for OpenCL
programs. As a result, applications optimized for older generations of hardware often require
fine-tuning to exploit the full capacity of newer generations.

2.4.3 Backward compatibility
OpenCL fully embraces backward compatibility to ensure the investment on old code can run on
new versions of OpenCL with no problems. Note that as some API functions may be deprecated
in newer versions, the macros CL_USE_DEPRECATED_OPENCL_1_1_APIS or
CL_USE_DEPRECATED_OPENCL_1_2_APIS need to be defined if the OpenCL 1.1 or 1.2
deprecated APIs are used with the OpenCL 2.x header file.

OpenCL extensions are not guaranteed to be carried forward to new devices, so applications
using extensions need to examine if the new devices support them.

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 14

3 OpenCL on Snapdragon

Snapdragon is one of the most powerful and widely used mobile platforms in today’s Android
operating system and the Internet of Things (IOT) market. The Snapdragon mobile platform
brings together best-in-class mobile components on a single chip, ensuring that Snapdragon-based
devices deliver the latest mobile user experiences in an extremely power-efficient, integrated
solution.

Snapdragon is a multiprocessor system that includes components such as a multimode modem,
CPU, GPU, DSP, location/GPS, multimedia, power management, RF, optimizations to software
and operating systems, memory, connectivity (Wi-Fi, Bluetooth), etc.

For a list of current commercial devices that include Snapdragon processors and to learn more
about Snapdragon processors, go to http://www.qualcomm.com/snapdragon/devices. Generally
used for rendering graphics applications, Adreno GPUs in Snapdragon processors are also
powerful general-purpose processors capable of handling many computationally intensive tasks,
such as image and video processing, and computer vision. The capabilities of the GPU can be
leveraged using OpenCL to perform data-parallel computations.

3.1 OpenCL on Snapdragon
OpenCL is fully supported on the Adreno A3x, A4x, and A5x GPUs, and is fully conformant
with the OpenCL standard. OpenCL has different versions and profiles, and different Adreno
GPUs may support different OpenCL versions, as shown in Table 3-1.

Table 3-1 Adreno GPUs with OpenCL support

GPU series Adreno A3x Adreno A4x Adreno A5x

OpenCL version 1.1 1.2 2.0
OpenCL profile Embedded Full Full

Besides the difference in OpenCL versions and profiles, there are other properties that may vary
across Adreno GPUs, such as the supported extensions and maximum dimensions of image
objects, etc. A full list of the details can be obtained by calling the OpenCL API function
clGetDeviceInfo.

http://www.qualcomm.com/snapdragon/devices

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL on Qualcomm Snapdragon

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 15

3.2 Adreno GPU architecture
This section provides a high-level overview of the Adreno architecture relevant to OpenCL.

3.2.1 Adreno high-level architecture for OpenCL

Figure 3-1 High-level architecture of the Adreno A5x GPUs for OpenCL

Adreno GPUs support many graphics and compute APIs, including the OpenGL ES, OpenCL,
DirectX, and Vulkan, etc. Figure 3-1 illustrates a high-level view of the Adreno A5x hardware
architecture for OpenCL, where the graphics related hardware modules are skipped. There are
many differences between A5x and other Adreno GPUs, while for OpenCL the differences are
relatively minor.

The key hardware modules for OpenCL execution are as follows:

 Shader (or streaming) processor (SP)

 Core block of Adreno GPUs. Contains many hardware modules, including arithmetic
logic unit (ALU), load/store unit, control flow unit, register files, etc.

 It executes graphics shaders (e.g., vertex shader, fragment shader, and compute shader)
and compute workload such as OpenCL kernels.

 Each SP corresponds to one or more OpenCL Compute Units.

 Adreno GPUs may contain one or more SPs, dependent on GPU series and tiers. A low-
tier chipset may have a single SP, while a high or premium tier chipset may have more
SPs. In Figure 3-1, there is only one SP.

 SPs load and store data through L2 cache for buffer objects and image objects defined
with the __read_write qualifier (OpenCL 2.0 feature).

 SPs load data from texture processor/L1 module for read-only image objects.

 Texture processor (TP)

 Performs texture operations, such as texture fetch and filtering based on kernel’s request.

 TP is coupled with L1 cache, which fetches data from UCHE in case of texture data
cache miss.

 Unified L2 Cache (UCHE)

Shader
Processor L2 Cache System

Memory

Texture
Processor/
L1 Cache

Image Read

Buffer Read/Write

Image Write

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL on Qualcomm Snapdragon

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 16

 Responds to SP’s load/store requests for buffer objects and L1 cache’s data load requests
for image objects.

3.2.2 Waves and fibers
In Adreno GPUs, the smallest unit of execution is called a fiber. One fiber corresponds to one
work item in OpenCL. A collection of fibers which always execute in lock-step is called a wave.
The SP can accommodate multiple active waves at a time. Each wave can generally make
independent forward progress, irrespective of the status of the other waves. Note that:

 Wave size, or the number of fibers in a wave, is generally fixed for a given GPU and kernel.

 Wave size in Adreno GPUs depends on the GPU series and tiers as well as the compiler;
values could be 8, 16, 32, 64, 128, etc.

 A workgroup may be executed by one or multiple waves, dependent on the workgroup size.
For example, one wave is sufficient if the workgroup size is less than or equal to the wave
size. Typically more waves are better as they allow better latency hiding.

 SP can execute ALU instructions on one or more waves simultaneously.

 The maximum number of waves that can be pipelined in the workgroup is hardware
dependent. Typically, Adreno GPUs support up to 16 waves.

 Given a kernel, the maximum number of active waves in one SP depends on the kernel’s
register footprint and register file size, which again depends on GPU series and tiers.

 Generally, the more complex the kernel is, the fewer active waves.

 Given a kernel, the maximum workgroup size is the product of the maximum allowed number
of waves and the wave size.

OpenCL 1.x does not expose the concept of waves, while OpenCL 2.0 allows applications to use
it through the cl_khr_subgroups extension, which is supported from the Adreno A5x GPUs.

3.2.3 Latency hiding
Latency hiding is one of the most powerful characteristics of GPU for efficient parallel
processing, and enables GPU to achieve high throughput. Here is an example:

 SP starts to execute the 1st wave.

 After a few ALU instructions, this wave requires additional data from external memory
(could be global/local/private memory) to proceed, which is not available.

 SP sends data fetch requests for this wave.

 SP switches execution to the 2nd wave which is ready to execute.

 SP continues to execute the 2nd wave to a point where external dependency is not ready.

 SP may switch to the 3rd wave, or switch back to the 1st wave, if the data for the 1st wave is
available.

In this way, SP is mostly busy and working like “full time” as the latency, or the dependency, can
be well hidden.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL on Qualcomm Snapdragon

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 17

3.2.4 Workgroup assignment
A typical OpenCL kernel launches multiple workgroups. In Adreno GPUs, each workgroup is
assigned to an SP, and each SP typically processes one workgroup at a time. The remaining
workgroups, if there is any, are queued in GPU for execution.

Take the 2DRange in Figure 3-2 as an example, and assume this is a GPU with 4 SPs. Figure 3-3
shows how the workgroups are allocated to different SPs. In this example, there are 9 workgroups
in total and each of them is executed by one SP. And there are four waves per workgroup, and the
wave size is 16.

WG [2,0]WG [0,0] WG [1,0]

WG[0,1]

SP0

SP0

SP0

SP1

SP1

SP2

SP2

SP3

SP3

LocalSizeXLocalSizeY

GlobalSizeX

GlobalSizeY

Wave 0 Wave 1

Wave 2 Wave 3

2D WorkRange

WG[2,0]

WG[0, 2] WG[1, 2] WG[2, 2]

WG[2, 1]

Fiber 3
In Wave 1
in SP1

Figure 3-2 An example of workgroup layout and dispatch in Adreno GPUs

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL on Qualcomm Snapdragon

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 18

WG[0,0]

WG[1,0]

WG[2,0]

WG[0,1]

WG[1,1]

WG[2,1]

WG[0,2]

WG[1,2]

WG[2,2]

SP1

SP0

SP0

SP0

Time increases

Figure 3-3 An example of workgroup allocation to SPs

The OpenCL standard neither defines the order of workgroup launching/execution, nor the
method for workgroup synchronization. For Adreno GPUs, developers cannot assume that
workgroups are launched in certain orders on the SPs. It is also true for waves.

In most Adreno GPUs, one SP can only process one workgroup at a time, and the workgroup
must be completed before another one can be started. While in high tier or newer series, such as
the Adreno A540 GPU, multi-workgroup execution per SP is supported.

3.3 Adreno A3x, A4x, and A5x differences on OpenCL
Each new series of Adreno GPUs brings numerous improvements to OpenCL features and
performance. This section discusses key changes that affect OpenCL performance.

3.3.1 L2 cache
The L2 cache architecture has been improved significantly for better efficiency and performance
from the Adreno A320 and A330 GPUs to the Adreno A420, A430, A530 and A540 GPUs, in
addition to size increases.

3.3.2 Local memory
Local memory has been improved from the Adreno A3x to A4x and A5x series, including the
size capacity, load/store throughput, and coalesced access. Table 3-2 shows the difference of
coalesced access on different series.

Table 3-2 Local memory performance summary

GPUs Adreno A3x Adreno A4x Adreno A5x

Coalesced No No Yes, load/store up to 128 bits by up to 4 work
items per operation

Coalesced access is an important concept for OpenCL and GPU parallel computing. Basically, it
refers to the case where the underlying hardware can combine and merge the data load/store
requests by multiple work items into one request, so that the data load/store efficiency is
improved. Without coalesced access support, the hardware must perform the load/store operation
per each individual request, resulting in inferior performance.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL on Qualcomm Snapdragon

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 19

Figure 3-4 illustrates the difference between coalesced data load vs. non-coalesced. To combine
the requests from multiple work items, the addresses of the data generally need to be consecutive.
In the coalesced case, Adreno GPUs can load data for four work items in one transaction, while
without coalesced it would take four transactions for the same amount of data.

Workitem 0 Workitem 1 Workitem 2 Workitem 3 Workitem 4 Workitem 5 Workitem 6 Workitem 7

1st load 2nd loadWith coalescing

Without coalescing

1st load 2nd load 3rd load 4th load 5th load 6th load 7th load 8th load

Figure 3-4 Illustration of coalesced vs. non-coalesced data load

3.4 Context switching between graphics and compute
workload

3.4.1 Context switch
In Adreno GPUs, if a high priority task, such as graphics user interface (UI) rendering, is required
while a low priority workload is running on GPU, the latter one could be forced to pause so that
GPU switches to the high priority workload. When the high priority task is completed, the lower
one is resumed. This type of workload switch is called context switch. Context switch is generally
expensive, as it requires complex hardware and software operations. However, it is an important
feature to enable the emerging and advanced timing critical tasks such as automobile applications.

3.4.2 Limit kernel/workgroup execution time on GPU
Sometimes a compute kernel may be running for an excessive period and trigger an alert that
causes the GPU to be reset. To avoid unexpected behaviors, it is discouraged to have compute
kernels with workgroups that take too long to complete. Usually the UI rendering on Android
devices occurs constantly, e.g., every 30 milliseconds, and a long-running compute kernel could
cause UI to be lagging and unresponsive, and therefore hurt user experience. The ideal execution
time would be case dependent. However, a general rule of thumb is that the kernel execution time
should be in the range of tens of milliseconds.

3.5 OpenCL standard related improvement
The Adreno A3x GPUs support OpenCL 1.1 embedded profile, while the Adreno A4x GPUs
support OpenCL 1.2 full profile, and the Adreno A5x GPUs support OpenCL 2.0 full profile.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL on Qualcomm Snapdragon

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 20

From the OpenCL 1.1 embedded profile to the OpenCL 1.2 full profile, the majority changes are
on software rather than hardware, such as improved API functions.

From the OpenCL 1.2 full profile to the OpenCL 2.0 full profile, however, there are many new
hardware features introduced, such as the shared virtual memory (SVM), kernel-enqueue-kernel,
etc. Table 3-3 lists the major differences on OpenCL profile support across the three Adreno
GPUs.

Table 3-3 Standard OpenCL features supported in Adreno GPUs

Features
OpenCL 1.1
Embedded
Adreno A3x

OpenCL 1.2 Full
Adreno A4x

OpenCL 2.0 Full
Adreno A5x

Separate compilation and
linking of objects

No Yes Yes

Rounding mode Rounding to zero Rounding to
nearest even

Rounding to nearest even

Built in kernels No Yes Yes
1D texture, 1D/2D image array No Yes Yes
Shared virtual memory No No Yes (coarse grain only)
Pipe No No Yes
Load-store image No No Yes
Nested parallelism No No Yes
Kernel-enqueue-kernel (KEK) No No Yes
Generic memory space No No Yes
C++ atomics No No Yes

3.6 OpenCL extensions
In addition to supporting the core OpenCL functionality, the Adreno OpenCL platform supports
many additional features through extensions, which improve the OpenCL usability and expose
advanced hardware capabilities in Adreno GPUs. The extensions available on a given Adreno
GPU may be queried using clGetPlatformInfo. Documentation for these extensions is
available on the QTI Developer Network website (https://developer.qualcomm.com).

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 21

4 Adreno OpenCL application development

This chapter briefly discusses some basic requirements for Adreno OpenCL application
development, followed by how to debug and profile applications.

4.1 OpenCL application development on Android
Currently, Adreno GPUs support OpenCL mainly on the Android operating system (OS) and on
select Linux systems. To develop an Android app that runs with OpenCL, developers need to get
familiar with the Android software development kit (SDK) and the native development kit
(NDK). Refer to https://developer.android.com/index.html and
https://developer.android.com/ndk/index.html for Android SDK and NDK respectively.

Throughout this chapter and the following chapters, it is assumed that the development is on
Android platform and the developers have experience on Android SDK and NDK. The app
development on Linux should be similar.

There are several prerequisites for OpenCL development on Snapdragon platform:

 Snapdragon devices with OpenCL support. Not all Snapdragon devices support OpenCL.
Refer to Table 3-1 for more details.

 OpenCL software. OpenCL on Adreno GPUs relies on QTI proprietary libraries.

 Check if the device has the OpenCL libraries installed.

– The core library is libOpenCL.so, which is usually located at /vendor/lib on device.

 Some vendors may choose not to include the OpenCL software (for example, Google’s
Nexus and Pixel devices).

 OpenCL must run at the NDK layer.

 Root access privilege is not necessary for development and testing, but it may be required for
running the SOCs in Performance mode.

Table 4-1 summarizes the key requirements for OpenCL development with Adreno GPUs.

Table 4-1 Requirements of OpenCL development with Adreno GPUs

Items Requirements Note

Devices Adreno A3x/A4x/A5x GPUs
Operating system Android, Linux Only select Linux platforms support OpenCL.
Device software requirement libOpenCL.so on device Some devices may not have it
Development requirement Adreno NDK/SDK OpenCL code needs to run at NDK layer

Root privilege on device Not required generally Required for performance mode

https://developer.android.com/index.html
https://developer.android.com/ndk/index.html

Qualcomm Snapdragon OpenCL General Programming and Optimization Adreno OpenCL application development

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 22

4.2 Debugging tools
Debugging OpenCL kernel is often challenging due to the parallel nature of GPU execution. The
Adreno GPUs support the printf function inside kernels, which is very useful for debug. To use
printf, it is recommended to reduce the workload, print variables with conditions, and avoid
printing out too many variables, as printf slows down code execution. For example, one may
only enable the problematic workgroup, or even the single problematic work item (by setting
proper offsets in the function CLEnqueueNDRangeKernel)

It is important to know the software version of the device as some bugs or issues may have been
fixed in the newer releases. To query the software (driver) and compiler version, an API function
called clGetDeviceInfo can be used. For more details, refer to References.

4.3 Snapdragon Profiler
The Snapdragon Profiler is a profiling tool provided by QTI that runs on Windows, Mac, and
Linux platforms and allows developers to analyze CPU, GPU, DSP, memory, power, thermal,
network data of Snapdragon processors running Android. It supports OpenCL and many graphics
APIs, such as OpenGL ES and Vulkan. For more details, refer to
https://developer.qualcomm.com/software/snapdragon-profiler.

The following are some key features offered by the Snapdragon Profiler for OpenCL profiling.

 The profiler has a kernel analyzer which allows developers to do static analysis for a given
kernel. It provides information such as register footprint, total instructions, and the number
instructions for each type of operations, etc., to help developers better optimize kernels.

 The profiler provides OpenCL API traces and logs for a given OpenCL application. It allows
developers to identify and resolve bottlenecks from the API level, as well as debug the
application.

 The profiler provides information such as GPU busy ratio, ALU utilization ratio, L1/L2 cache
hit ratio, etc., which is essential for developers to identify performance issues in kernels.

 The profiler supports command line based applications, as well as Android GUI apps.

4.4 Performance profiling
Given an app, it is critical to profile its performance accurately. Two commonly used methods,
CPU timer and GPU timer, and their key differences are discussed in the following sections.

4.4.1 CPU timer
CPU timer is used for measuring the full execution time of OpenCL calls from the host side. This
can be achieved by using any of the date and time functions that are part of the standard library of
the C/C++ programming language. An example is to use gettimeofday as follows:

#include <time.h>
#include <sys/time.h>
void main() {
struct timeval start, end;
gettimeofday(&start, NULL); /*get the start time*/
/*Execute function of interest*/ { . . .

https://developer.qualcomm.com/software/snapdragon-profiler

Qualcomm Snapdragon OpenCL General Programming and Optimization Adreno OpenCL application development

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 23

 clFinish(commandQ);
 }
gettimeofday(&end, NULL); /*get the end time*/
/*Print the total execution time*/
printf("%ld\n", ((end.tv_sec * 1000000 + end.tv_usec)
 - (start.tv_sec * 1000000 + start.tv_usec)));
}

The OpenCL runtime enqueue API functions can be categorized to blocking calls and
nonblocking calls. And for nonblocking calls CPU timer must be used with care:

 Nonblocking call means that the host proceeds to the next instruction after its submission
(which usually is queued for execution in another CPU thread), rather than wait for the
function call to complete.

 The kernel execution API function, clEnqueueNDRangeKernel, is a nonblocking
function.

 For nonblocking calls, the real execution time is not the time difference between the function
call.

When using a CPU timer to measure the kernel execution time from host side, one must make
sure the function is complete by using either the clWaitforEvent call (if there is an event ID
for the nonblocking call), or clFinish. The same rule applies to the memory transfer calls.

4.4.2 GPU timer
All OpenCL enqueue function calls optionally return an event object to the host, which can be
used by the OpenCL profiling APIs to query the execution time. Adreno GPUs have their own
clock and timer to measure the function execution flow, and the GPU execution time is
determined by GPU hardware counters that are independent of the operating system.

To enable the GPU timer functionality, the CL_QUEUE_PROFILING_ENABLE flag needs to be set
in the property argument of either clCreateCommandQueue or clSetCommandQueueProperty
for the current command queue. Also, an event object must be provided to the enqueue function.
Once the function is completed, the API function clGetEventProfilingInfo shall be used to
obtain the profiling information of the command execution.

For a clEnqueueNDRangeKernel call, using the clGetEventProfilingInfo function with the
four profiling parameters, including CL_PROFILING_COMMAND_(QUEUED, SUBMIT, START,
and END), can provide an accurate picture of the kernel launch latency and kernel execution time
in Adreno GPUs, as shown in Figure 4-1.

 The difference between the first two parameters, CL_PROFILING_COMMAND_(QUEUED and
SUBMIT), gives an idea of the software overhead, and the overhead of CPU cache operations.
The OpenCL software may choose to queue the kernel first, and submit it along with several
following kernels in the queue later, for example, when the number of kernels in the queue is
large enough. Developers may use the clFlush function to speed up the submission.

 The difference between CL_PROFILING_COMMAND_(SUBMIT and START) can give an idea
of many other jobs GPU is processing.

 The actual kernel execution time on GPU is the difference between
CL_PROFILING_COMMAND_(START and END).

Qualcomm Snapdragon OpenCL General Programming and Optimization Adreno OpenCL application development

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 24

Developers should focus on minimizing the actual kernel execution time. This can be improved
relatively easier as compared to the other two timers that are typically hard to control.

QUEUED SUBMIT START END

Command execution on GPUGPU is busy processing other tasks Software overhead,
e.g., cache flush

Kernel optimization should be
focusing on

Figure 4-1 Profiling flags for the clEnqueueNDRange call in Adreno GPUs

4.4.3 GPU timer vs. CPU timer
As both GPU and CPU timer can be used to profile the performance, which one should be used
for an application? Though GPU timer can accurately measure the GPU execution time, some
hardware operations (e.g., cache flush) and some software operations (e.g., synchronization
between CPU host and GPU) are out of the GPU clock system. As a result, the GPU timer is
likely to report a better performance number than CPU timer for kernel execution. Here are the
two practices recommended:

 GPU timer should be used to measure the kennel optimization. GPU timer can tell exactly
how much improvement is achieved by the optimization steps from a GPU execution
perspective.

 CPU timer should be used to measure end-to-end performance for the whole application. This
is important if the OpenCL program is only part of a whole application pipeline.

4.4.4 Performance mode
Snapdragon SOCs have advanced dynamical clock and voltage control mechanism which
automatically controls the system so that it runs at power saving mode to save battery under
certain scenarios. Typically, if there is intensive workload, the system may automatically raise
clock rate and voltage, pushing the device into so-called performance mode to boost the
performance and meet the workload demand.

For OpenCL optimization, it would be difficult to understand and profile the performance if the
system dynamically changes clock rate. Therefore, it is recommended to enable performance
mode for the sake of profiling consistence and accuracy.

In the absence of performance mode settings, the first OpenCL kernel in a sequence typically
shows greater launch latency and slower execution time. One may need to use some simple
kernels to warm up the GPU before launching the real GPU workload.

The performance of an OpenCL kernel is not solely dependent on GPU. The API functions
running at CPU are as critical as the kernel execution on GPU. To achieve the best performance,
both CPU and GPU should have performance mode enabled. In addition, to reduce the
interference from UI rendering, it is recommended that:

 Ensure that the application being profiled renders full screen so that no other activity is
updating the screen.

Qualcomm Snapdragon OpenCL General Programming and Optimization Adreno OpenCL application development

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 25

 If it is a native application, be sure that SurfaceFlinger is not running on Android. This
ensures that the CPU and GPU are being solely used by the application being profiled.

The sequence of commands needed to enable performance mode are slightly different for the
Adreno A3x, A4x and A5x GPUs. Refer to Section A for more details.

4.4.5 GPU frequency controls
The application can leverage the cl_qcom_perf_hint extension to control GPU frequency. This
extension allows the application to set a performance hint property when creating the OpenCL
context. The performance level can be HIGH, NORMAL and LOW. The NORMAL perf level leaves the
dynamic clock and voltage control enabled. The HIGH and LOW performance levels disable the
dynamic control and force the GPU to run at their maximum and minimum frequencies
respectively.

NOTE: The performance levels are just a hint. The driver attempts to respect these hints but factors such
as thermal controls or external applications or services can override these hints. The perf hint
extension gives the application some flexibility in the power/performance tradeoff. However, it
should be used carefully as it has major implications for SOC level power consumption.

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 26

5 Overview of performance optimizations

This chapter provides a high-level overview of OpenCL application optimization. More detailed
discussions can be found in the next few chapters.

NOTE: Optimization of an OpenCL application can be challenging. It often requires considerably more
efforts than initial development..

5.1 Performance portability
As discussed in Section 2.4.2, OpenCL generally does not have good performance portability
across different architectures. OpenCL applications that have been optimized on other platforms,
especially on discrete GPUs, are unlikely to perform well on Adreno GPUs. The programming
guide and best practices from other OpenCL vendors may not be applicable for Adreno GPUs at
all. Therefore, it is extremely important to read through this entire document for optimization
work on Adreno GPUs. Also, an OpenCL application optimized for one Adreno GPU may need
extra tuning or optimization to achieve optimal performance on other Adreno GPUs.

5.2 High-level view of optimization
Optimization of an OpenCL application can be roughly categorized into the following three levels
from top to bottom:

 Application/algorithm

 API functions

 Kernel optimization

An OpenCL optimization problem is essentially a problem of how to optimally utilize the
memory bandwidth and computing power, including

 The optimal ways to use global memory, local memory, registers and caches, etc.

 The optimal ways to leverage computing resources such as the ALU and texture operations.

The application level optimization strategy is addressed in the remaining sections of this chapter.
Other levels are presented in the following chapters.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: overview

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 27

5.3 Initial evaluation for OpenCL porting
It is important for developers to assess whether an application is suitable for OpenCL prior to
porting it blindly. Following are the typical characteristics of a good candidate for OpenCL
acceleration on GPU:

 Large input data set

 The overhead between CPU and GPU may overshadow the performance gain of OpenCL
for small input data sets.

 Computationally intensive

 GPUs have many computing units (ALUs) and its peak computing power, gflops, is
usually a lot higher than CPU. To fully utilize the GPU, applications should have
reasonably high computational complexity.

 Parallel computation friendly

 The workload may be partitioned into independent small units, and processing of each
unit does not affect the others.

 Parallelized task is needed to fully utilize GPU’s capability for memory latency hiding, a
key benefit of using GPU.

 Limited divergent control flow

 GPU is not designed to handle divergent control flow as efficiently as CPU. If the use
case requires a lot of conditional check and branching operations, CPU may be more
suitable.

5.4 Port CPU code to OpenCL GPU
Typically, developers may already have a CPU based reference program for OpenCL porting.
Assume the program consists of many small functional modules. While it seems convenient to
convert each module to an OpenCL kernel on a one-by-one mapping basis, the performance is
unlikely to be optimal. It is important to consider the following factors:

 In some cases, merging multiple CPU functional modules into one OpenCL kernel can lead to
better performance if doing so reduces data traffic between GPU and memory.

 In some cases, splitting a complex CPU functional module into multiple simpler OpenCL
kernels can yield better parallelization of individual kernels and better overall performance.

 Developer may need to modify data structures to tailor the data flow in a way that can reduce
overall data traffic.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: overview

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 28

5.5 Parallelize GPU and CPU workloads
To fully utilize the compute power of the SOC, the application may delegate certain tasks to the
CPU while the GPU is executing a kernel. Here are a few points to consider when designing such
topology and allocating the workload:

 Allow the CPU to run the part that is best suitable for the CPU, such as divergent control flow
and sequential operations.

 Avoid situations where the GPU is idle and waits for the CPU to complete, or vice versa.

 Data sharing between the CPU and GPU can be expensive. Instead, try shifting lightweight
CPU tasks to the GPU, even though it may not be GPU friendly, to eliminate the need for
data transfer.

5.6 Bottleneck analysis
It is crucial to identify and analyze bottlenecks, as this leads to focus areas for optimization.
Bottlenecks cause stalls and are often the slowest stages in the application. No matter how
efficient other stages are, performance of the application is limited by its slowest stages, i.e., the
bottlenecks. It may not make sense to pay any attention to areas until the bottleneck is resolved.

5.6.1 Identify bottlenecks
Typically, a kernel is either memory-bound or computation-bound (also known as ALU bound).
One simple trick is to manipulate the kernel codes and run on device as follows:

 If adding a lot more computing does not change performance, it may not be compute
bound.

 If loading excessive data does not change performance, it may not be memory bound.

The Snapdragon Profiler, as discussed in Section 4.3 can be used to identify the bottlenecks.

5.6.2 Resolve bottlenecks
Once the bottleneck is identified, different strategies can be used to resolve it:

 If this is an ALU bound problem, find ways to reduce the complexity and the number of
calculations, such as using fast relaxed math or native math where the precision requirements
are not high, and using 16-bit floating point format instead of 32-bit floating point format.

 If this is a memory bound problem, try to improve memory access, such as vectorizing
load/store, utilizing local memory or texture cache (e.g., use read-only image object in place
of buffer object). Using shorter data types to load/store data between GPU and global
memory can be beneficial for saving memory traffic.

Details are described in following chapters.

NOTE: The bottleneck could shift as optimization progresses. A memory bound problem could become
an ALU bound problem if the memory bottleneck is resolved, or vice versa. Many back and forth
iterations are necessary to obtain the optimal performance.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: overview

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 29

5.7 API level performance optimization
The OpenCL API functions are executed on the CPU host to manage resources and control
application execution. Although, in general, API functions are lighter than kernel execution from
computational complexity perspective, improper use of API functions could lead to big
performance penalty. Here are a few points that can help developers avoid some common pitfalls.

5.7.1 Proper arrangement of API function calls
Expensive API functions should be properly placed so that they do not block or affect the
launching of workload to GPU. Some OpenCL API functions take a long time to execute and
should be called outside of the execution loop. For example, following functions can take a lot of
time to execute:

clCreateProgramWithSource()
clBuildProgram()
clLinkProgram()
clUnloadPlatformCompiler()

 To reduce the execution time during application startup, use clCreateProgramWithBinary
instead of clCreateProgramWithSource. See Section 5.7.3 for more details. Section

NOTE: Do not forget to fall back to building from source when clCreateProgramWithBinary fails.
This could occur, though rarely, if the OpenCL software has incompatible updates.

 Avoid creating or releasing memory objects between NDRange calls. The execution time of
clCreate{Image|Buffer} is related to the amount of memory requested (if host_ptr is
used).

 If possible, use Android ION memory allocator. clCreate{Buffer|Image2D} can create
memory objects with an ION pointer instead of allocating additional memory and copying it.
Section 7.4 discusses how to use the ION memory.

 Try to reuse memory and context objects in OpenCL to avoid creating new objects. Overall,
the host should be doing a lightweight work during the GPU kernel launch to avoid stalling
GPU’s execution.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: overview

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 30

5.7.2 Use event-driven pipeline
The OpenCL enqueue API functions may accept an event list that specifies all the events that
must be complete before the current API function starts to execute. Meanwhile, the enqueue API
functions can also emit an event ID to identify themselves. The host simply submits the API
functions and kernels to GPU for execution without worrying about their dependency and
completeness, if the dependency is correctly specified in the event list parameters. By using this
method, the overhead of launching API function calls is reduced significantly, as the software can
schedule the functions in its best way and the host does not have to interfere in between the API
function calls. Therefore, it is highly desirable to streamline the API functions using event driven
pipeline. In addition, developers should note:

 Avoid blocking API calls. A blocking call stalls the CPU to wait for the GPU to finish, then
stalls the GPU before the next clEnqueueNDRangeKernel call. Blocking API calls is
useful mostly for debugging.

 Use callback functions. Starting with OpenCL 1.2, many API functions are enhanced or
modified to accept user-defined callback functions to handle events, and this asynchronous
call mechanism allows more efficient pipeline execution as the host is now more flexible to
handle the events.

5.7.3 Kernel loading and building
Loading and building kernel source at runtime can be expensive. Some applications may prefer to
generate source code on-the-fly, as some parameters may not be available upfront. This may be
fine if generation and compilation of the source code do not affect GPU execution. But in general,
dynamic source code generation is discouraged.

Instead of building the source code on-the-fly, a better way is to build the source code offline and
use the binary kernel only. When the application is loaded, the binary kernel code is loaded as
well. Doing so would significantly reduce the overhead of loading code from disk.

If the application targets different tiers of Adreno devices, different versions of the binary code
are needed. A few things to note regarding compatibility:

 Binary code can be used only for the specific GPU for which it was compiled. If a binary was
built on a device that has the Adreno A530 GPU, it cannot be used on a device that has the
Adreno A540 GPU.

 Backward compatibility is available across compiler versions. Newer versions of the
compiler may support an older binary, provided that the target GPU is the same.

If an incompatible binary kernel is found, use clCreateProgramWithSource as a fall back
solution.

5.7.4 Use in-order command queues
The Adreno OpenCL platform has support for out-of-order command queues. However, there is a
greater overhead due to the dependency management required for implementing out-of-order
command queues. The Adreno software pipelines commands sent to an in-order queue.
Therefore, it is good practice to use in-order command queues rather than out-of-order command
queues.

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 31

6 Workgroup size performance optimization

Workgroup size tuning is a simple and effective optimization method for many kernels. This
chapter presents the fundamental information on workgroup size, such as how to get workgroup
size, why workgroup size is important, some common practices on optimal workgroup selection
and tuning are also discussed.

6.1 Obtain the maximum workgroup size
The maximum workgroup size of a kernel on a device can be queried by using the following API
function after running clBuildProgram:

 size_t maxWorkGroupSize;
 clGetKernelWorkGroupInfo(myKernel,
 myDevice,
 CL_KERNEL_WORK_GROUP_SIZE,
 sizeof(size_t),
 &maxWorkGroupSize,
 NULL);

The actual workgroup size used by clEnqueueNDRangeKernel cannot exceed
maxWorkGroupSize. If the workgroup size is not specified by the application, the Adreno
OpenCL software may select a maximum working workgroup size.

6.2 Required and preferred workgroup size
A kernel may be written in a way that certain workgroup size is required or preferred. OpenCL
provides following methods for requesting specific workgroup size to the compiler:

 Use the reqd_work_group_size attribute

The reqd_work_group_size(X, Y, Z) attribute passes in a specific work group size as a
requirement. An error is returned if the specified work group size cannot be satisfied.

For example, to require 16x16 work group size:

 __kernel __attribute__((reqd_work_group_size(16, 16, 1)))
 void myKernel(__global float4 *in, __global float4 *out)
 { . . . }

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: workgroup size

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 32

 Use the work_group_size_hint attribute

The OpenCL software attempts to use the specified size, but does not guarantee the actual
workgroup size matches the hint. For example, to hint 64x4 work group size:

 __kernel __attribute__((work_group_size_hint (64, 4, 1)))
 void myKernel(__global float4 *in, __global float4 *out)
 { . . . }

In most cases, the compiler cannot guarantee that it generates the optimal machine code if the
workgroup size restriction is imposed. Also, the compiler may have to spill registers to the
system’s random-access memory (RAM), if it cannot meet the required workgroup size using the
on-chip registers. Therefore, the use of these two attributes is discouraged, unless the kernel is
written in a way that a specified workgroup size is mandatory for the kernel to work.

NOTE: For cross-platform compatibility purposes, it is not a good practice to write kernel that relies on a
fixed workgroup size or layout.

6.3 Factors affecting the maximum workgroup size
If no workgroup size attributes are specified, the maximum workgroup size of a kernel depends
on many factors:

 Register footprint of the kernel. Generally, the more complex the kernel is, the larger the
register footprints, and smaller the maximum workgroup size. Factors that could raise register
footprint are as follows:

 Packing more workload for each work item

 Control flow

 High precision math functions (e.g., not using the native math functions or fast math
compilation flag)

 Local memory, if this leads to allocating additional registers to temporarily store source
and destination of load/store instructions.

 Private memory, e.g., an array defined for each work item.

 Loop unrolling

 Inline functions

 Size of the general purpose register (GPR) File

 Adreno low tiers may have smaller register file size.

 Barriers in kernel

 If a kernel does not use barriers, the maximum workgroup size can be set to DEVICE
MAXIUMUM in the Adreno A4x and A5x series, regardless of the register footprint.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: workgroup size

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 33

6.4 Kernels without barrier
Traditionally, all work items in the workgroup have been required to be resident on the GPU at
the same time. For kernels that have heavy register footprint, this can restrict their workgroup size
to be well below the device maximum.

Starting from the Adreno A4x series, kernels without barrier can have the maximum workgroup
size that Adreno supports, typically 1024, despite their complexity. As there is no synchronization
required between waves, for these types of kernels, a new wave can start to execute when an old
wave is complete.

In this case, having the maximum workgroup size does not mean that they have good parallelism.
A kernel without barriers could be so complex that only a few waves run in parallel inside SP,
which would result in poor performance. Developers should continue to optimize and minimize
the register footprint, regardless of the maximum workgroup size obtained from the
clGetKernelWorkGroupInfo function.

6.5 Workgroup size tuning
This section describes general guidelines in selecting the best workgroup size and shape.

6.5.1 Avoid using default workgroup size
If a kernel call does not specify the workgroup size, the OpenCL software will find a working
workgroup size using some simple mechanism. Developers should be aware that the default
workgroup size is unlikely to be optimal. It is always a good practice to try different workgroup
size and shape layout (for 2D/3D) manually and find the optimum one.

6.5.2 Large workgroup size, better performance?
This is true for many kernels, as increasing the workgroup size allows more waves to be resident
on the SP, which often translates to better latency hiding and improved SP utilization.

However, for some kernels, performance may deteriorate with increasing workgroup sizes. An
example is when larger workgroup size results in increased cache thrashing, due to poor data
locality and access patterns. The locality problem is also acute for texture accesses, because the
texture cache is typically smaller than the unified L2 cache. Ultimately, it is the nature of data
access within the kernel that determines the best workgroup size and shape.

6.5.3 Fixed vs. dynamic workgroup size
For performance portability across devices, avoid making assumptions that one workgroup size
fits all, and avoid hard coding workgroup size. A specific workgroup size and layout that works
best on one device may be suboptimal on another. Therefore, given a kernel, it is advised to
profile different workgroup sizes for all devices that the kernel can execute with, and select the
best one for each device at runtime.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: workgroup size

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 34

6.5.4 One vs. two vs. three-dimensional (1D/2D/3D) workgroup
The dimensionality of a kernel may have performance implication. Dependent on the data access
pattern by work items, in some cases a 2D kernel may have better data locality in cache, which
leads to better memory access and better performance. While in other cases, a 2D kernel may
result in worse cache thrashing than 1D kernel. It would be good to try different dimensions with
the kernel for optimal performance.

6.6 Other topics on workgroup size

6.6.1 Global work size and padding
OpenCL 1.x requires that the global worksize of a kernel needs to be a multiple of its workgroup
size. If the application specifies a workgroup size that does not meet this condition, the
clEnqueueNDRangeKernel call will return an error. In such a case, the application can pad the
global work size such that it becomes a multiple of the user specified workgroup size.

NOTE: OpenCL 2.0 lifts this restriction, and the global worksize does not have to be multiple of the
workgroup size, which is called non-uniform workgroups.

Ideally, the workgroup size in its first dimension should be a multiple of the wave size (32 for
example) to fully utilize the wave resources. If this is not the case, consider padding the
workgroup size to meet this condition, keeping in mind that the global worksize may also need to
be padded for OpenCL 1.x.

6.6.2 Brute force search
Due to the complexity involved in workgroup size selection, experimentation is often the best
way to find the optimal size and shape.

One option is to use a warm-up kernel that has similar complexity as the actual workload (but
perhaps using smaller workload) to dynamically search the optimal workgroup size at the start of
the application. The selected workgroup size is then used for the actual kernel. Many commercial
benchmarks rely on this method.

6.6.3 Avoid uneven workload across workgroups
Some applications may be written in a way that uneven workload across workgroups could occur.
For instance, some region based image processing use cases may have some regions that need a
lot more processing than the other regions. This should be avoided as the performance may be
unpredictable. In addition, it can complicate the context switch, if any single workgroup takes too
long to finish.

A method to overcome this issue is to adopt a two-stage processing strategy. The first stage may
collect the interesting points and prepare data for the second stage to process. The workload is
more deterministic, which might make it easier to distribute equally across workgroups.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: workgroup size

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 35

6.6.4 Workgroup synchronization
OpenCL does not guarantee the execution order of workgroups and does not define a mechanism
to do workgroup synchronization. It is not recommended to have the application depend on the
workgroup orders.

In practice, it is possible to do limited synchronization across workgroups by using atomic
functions or other methods. For example, the application may allocate a global memory object
that is updated atomically by work items from different workgroups. A workgroup can monitor
the memory object that is updated by the other workgroups. By this way, it is possible to achieve
limited workgroup synchronization.

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 36

7 Memory performance optimization

Memory optimization is the most important and effective OpenCL performance technique. A
significant number of applications are memory bound rather than compute bound. Mastering
memory optimization is therefore essential for OpenCL optimization. In this chapter, the OpenCL
memory model is reviewed, followed by the best practices.

7.1 OpenCL memories in Adreno GPUs
OpenCL defines four types of memory—namely, global, local, constant, and private memory—
and understanding the differences between them is essential. Figure 7-1 illustrates a conceptual
layout of these four types of memory.

Figure 7-1 OpenCL conceptual memory hierarchy

The OpenCL standard only defines these memory types conceptually, and how they are
implemented is vendor-specific. The physical locations may be different from its conceptual
location. For example, private memory objects may be allocated in the off-chip system RAM
which is far away from GPU.

Table 7-1 lists the definition of the four types of memory, and their latency and physical location
in Adreno GPUs. In Adreno GPUs, both local and constant memory are supported by on-chip
RAM and have much shorter latency than the off-chip system RAM.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 37

Generally, it is recommended to use local and constant memory for data that need frequent access
to take advantage of the short latency property. More details are presented in the following
sections.

Table 7-1 OpenCL memory model in Adreno GPUs

Memory Definition Relative latency Location

Local Shared by all work items
in a work group

Medium On-chip, inside SP

Constant Constant for all work
items in a work group

Low for on-chip allocation,
and high otherwise

On-chip if it can fit in.
Otherwise in system RAM

Private Private to a work item Based on where the memory
is allocated by the compiler

In SP as register or local
memory or in system RAM
(compiler determined)

Global Accessible by all work
items in all work groups

High System RAM

7.1.1 Local memory
Adreno GPUs support fast on-chip local memory, while the local memory size varies from
series/tiers to series/tiers. Prior to using local memory, it is a good practice to query how much
local memory is available per workgroup for the device using the following API:

 clGetDeviceInfo(deviceID, CL_DEVICE_LOCAL_MEM_SIZE, ..)

Here are the guidelines for using local memory.

 Use local memory to store data that is used repeatedly or to store intermediate results between
two stages within a kernel.

 An ideal scenario is when work items access the same content multiple times, and more
than twice

– For example, consider a window-based motion estimation using object matching for
certain video processing. Suppose each work item processes a small region of 8x8
pixels within a search window of 16x16 pixels, leading to a lot of data overlap
between neighboring work items. Local memory cancan be a good fit to store the
pixels in this case to reduce the redundant fetch.

 Barriers used for data synchronization across work items may be expensive

 If there is data exchange between work items, for example, work item A writes data to
local memory and work item B reads from it, a barrier operation is required due to the
relaxed memory consistency model in OpenCL.

 Barrier often results in a synchronization latency that stalls ALUs, leading to lower ALU
utilization.

 In some situations, caching data into local memory leads to synchronization latency that
washes out the benefits of using local memory. In such a case, using global memory
directly—to avoid barrier—may be a better option.

 Use vectorized local memory load/store

 Using a vectorized load of up to 128 bits (e.g., vload4_float) that is 32-bit aligned is
recommended.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 38

 Vectorized data load/store is discussed in more details in Section 7.2.2.

 Allow each work item to participate in local memory data load rather than use one work item
to do the entire load

 Avoid having only one work item to load/store entire local memory for the workgroup.

 Avoid using the function called async_work_group_copy. It is often difficult for compiler
to generate the optimal code to load local memory and better for developers to write code that
manually loads data into local memory.

7.1.2 Constant memory
Adreno GPUs support on-chip constant memory. It has the best latency and superior performance
among the four types of memory. Constant memory is usually used in the following cases:

 Scalar and vector variables defined with constant qualifier are usually stored in constant
RAM.

 An array defined with constant qualifier is stored in constant RAM, if it is defined in
program scope (e.g., the compiler can determine its size) and there is sufficient space is
constant RAM.

 Scalar or vector data types for kernel arguments are stored in constant RAM. For example,
coeffs in the following example will be stored in constant RAM:

 __kernel void myFastKernel(__global float* bar, float8 coeffs)
 { //coeffs will be mapped to constant RAM }

 Scalar and vector variables and arrays which are qualifies by __constant but do not fit into
constant RAM, will be allocated in system RAM.

 To have an array defined in kernel argument load into constant RAM, an attribute called
max_constant_size(N) must be provided to indicate the size of the constant array, where N
represents the number of bytes required. In the following example 1024 bytes in the constant
RAM is allocated for the variable foo:

 __kernel void myFastKernel(
 __constant float foo* __attribute__((max_constant_size(1024)))
 { . . . }

Specifying the max_constant_size attribute is important. Without this attribute, the array is
stored in the off-chip system RAM, since the compiler does not know the size of the array and
cannot promote it to the on-chip RAM.

NOTE: This feature is only supported for 16-bit and 32-bit arrays; 8-bit arrays are not supported. Also, if
there is insufficient space in constant memory to allocate the array, it is stored in the off-chip
system RAM instead.

NOTE: Constant RAM may not be optimal for an array that is dynamically indexed, and divergently
accessed by work items. For example, if one work item fetches index 0 and the next one fetches
index 20, constant memory is inefficient. Using an image object is a better choice in this case.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 39

7.1.3 Private memory
In OpenCL, private memory is private to each work item and not accessible by other work items
in the workgroup. Physically, private memory could reside in on-chip registers or off-chip system
RAM. The exact location depends on several factors and here are a few typical cases:

 Scalar variables are stored in registers, which is the fastest memory.

 If no enough registers, private variables will be allocated in system RAM.

 Private arrays may be stored in:

 Local memory, though it is not guaranteed

 Off-chip system RAM, if they exceed local memory capacity

Storing private memory into off-chip system RAM is highly undesirable as system RAM is
slower and private memory access patterns are not cache friendly, especially if the amount of
private memory per work item is large. Here are several recommendations:

 Avoid defining any private array in kernels. Try to use vector if possible.

 Replace private array with global or local array and design its layout so that the access of the
array elements can be coalesced across multiple work items. The cache performance could be
a lot better.

 Use vectorized private memory load/store, i.e., try to load/store up to 128-bit per transaction.

7.1.4 Global memory
OpenCL application can use two types of global memory objects, buffer and image, and both use
the off-chip system RAM. As compared to a buffer object which is simple one-dimensional data
array stored in system RAM, image object is an opaque memory object in the sense that
developers cannot assume the layout or format of how data are stored internally. When an image
object is created, the software arranges the data in certain ways for GPU to access more
efficiently. The optimal ways to use them are quite different and discussed in the following
sections.

7.1.4.1 Buffer
Buffer objects store one-dimensional collection of elements, which can be scalar data types (such
as integer, floating point), vector data type, or user-defined structures. A buffer object is created
using the following API function:

cl_mem clCreateBuffer (cl_context context,
 cl_mem_flags flags,
 size_t size,
 void *host_ptr,
 cl_int *errcode_ret)

Buffer objects are stored in global memory and accessed via the L2 cache in Adreno GPUs. In
this function, the most important parameter is cl_mem_flags. OpenCL allows many different
flags for this function, and how to select and combine these flags is extremely important for
performance. Here are a few points:

 Some flags may incur an extra memory copy. Try to use zero-copy flags that are discussed in
Section 7.4.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 40

 Some flags are meant for desktop/discrete GPUs with dedicated GPU memory.

 Use the flags that are most accurate. The general idea is that as the flags are more restrictive,
the OpenCL driver can find better configurations for the object and improve its performance.
For instance, it can impose a cache flush policy (write-through, write-back, etc.) that best fits
the memory object. Section 7.4.2 has more details on the cache policy and its implication for
performance. Here are a few examples:

 If the memory is read-only by host, then use CL_MEM_HOST_READ_ONLY.

 If the memory has no access by host, then use CL_MEM_HOST_NO_ACCESS.

 If the memory is for host to write only, use CL_MEM_HOST_WRITE_ONLY.

7.1.4.2 Image
An image object is used to store a one-, two-, or three-dimensional texture, frame buffer, or an
image data, and the layout of data inside the image object is opaque. In practice, the content in the
object does not have to be associated with an actual image data. Any data can be stored as image
object to utilize the hardware texture engine and its L1 cache in Adreno.

An image object is created using the following API:
cl_mem clCreateImage(cl_context context,
 cl_mem_flags flags,
 const cl_image_format *image_format,
 const cl_image_desc *image_desc,
 void *host_ptr,
 cl_int *errcode_ret)

Notice that cl_mem_flags for image has the similar rule of thumb to the buffer object as
discussed in the previous section.

There are many image formats and data types supported in Adreno GPUs. From the Adreno A3x
GPUs to the Adreno A5x GPUs, new pairs of image format and data type have been added. Users
may use the function clGetSupportedImageFormats to get a full list of the supported image
format/data type.

To fully utilize the memory bandwidth, it is recommended to use the pairs whose length is of
128-bit, e.g., CL_RGBA/CL_FlOAT, CL_RGBA/CL_SIGNED_INT32, etc.

7.1.4.3 Using image object vs. buffer object
Using image object over buffer object has following advantages:

 Leverage the texture engine hardware.

 Leverage the L1 cache

 Handling of image boundary is built-in.

 Supports numerous image format and data type combinations listed under “Image” in
Section 7.1.4, with support for automatic format conversions.

OpenCL supports two sampler filters, CLK_FILTER_NEAREST and CLK_FILTER_LINEAR. For
CLK_FILTER_LINEAR, the proper combination of image type allows the GPU to do automatic
bilinear interpolation using its built-in texture engine.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 41

For example, assume an image is of type CLK_NORMALIZED_COORDS_TRUE and
CL_UNORM_INT16, i.e., image date is 2-byte unsigned short. Function call read_imagef will do
the following:

 Reads pixels from image object (which is then cached in L1 cache).

 Interpolates neighboring pixels in hardware.

 Converts and normalizes it to the range of [0, 1]

This is convenient for bilinear or trilinear interpolation operations.

Sometimes a buffer object may be a better choice:

 More flexible data access:

 Image object only allows access at the pixel size boundary, for example, 128-bit for
RGBA and 32-bit/channel image object.

 For buffer object, Adreno supports byte addressable access. For example, 128-bit data
could be loaded from any byte address in a buffer object, if it is not out of the buffer
boundary.

 If L1 becomes the bottleneck.

 For example, there is serious L1 cache thrashing, which makes L1 cache access
inefficient.

 A buffer object can be read and write inside kernels. Although image object can also be read
and write from OpenCL 2.0, its performance is generally worse due to synchronization
requirement.

Table 7-2 Buffer vs. image in Adreno GPUs

Features Buffer Image

L2 cache Yes Yes
L1 cache No Yes
Support read and write object Yes No in OpenCL 1.x

Yes, in OpenCL 2.x (synchronization required)
Byte addressable Yes No
Built-in hardware interpolation No Yes
Built-in boundary handling No Yes
Support image format/sampler No Yes

7.1.4.4 Use of both Image and buffer objects
Instead of using texture object only or buffer object only, a better way is to have both
UCHESP and UCHETPL1SP paths fully utilized. As TPL1 has L1 cache, storing L1 the
most frequently used but relatively small amount of data is a good practice.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 42

7.1.4.5 Global memory vs. local memory
One use case of local memory is to load data into local memory first, synchronize to make sure
the data are ready, and then the work items in the workgroup can use it for processing. However,
using global memory may be better than LM due to the following reasons:

 May have better L2 cache hit ratio and better performance

 Code is simpler than local memory and have a larger work group size

7.2 Optimal memory load/store
In previous sections we discussed the general guidance on how to use different type of memory.
In this section, we will go over a few key and general points that are critical for performance
regarding memory load/store.

7.2.1 Coalesced memory load/store
Coalesced load/store refers to the capability of combining load/store requests from multiple
neighboring work items, as mentioned in Section 3.3.1 for local memory access. Coalesced
access is also important for global memory load/store.

Coalesced store works in a similar manner to read, except that load is a 2-way process (request
and respond), while store is a 1-way process. Therefore, coalesced load is generally more critical
than store.

In Adreno GPUs, hardware coalesced access has been enabled gradually since the Adreno A4x
GPUs, as shown in Table 7-3. Private memory does not support coalesced access.

Table 7-3 Coalesced access support in Adreno GPUs

Load/store Adreno A3x Adreno A4x Adreno A5x

Global memory coalesced load No No Yes
Global memory coalesced store No Yes No
Local memory coalesced load/store No No Yes

7.2.2 Vectorized load/store
Vectorized load/store refers to multiple data load/store in a vectorized way for single work items.
This is different from coalesced access, which is for multiple work items. Here are a few key
points to use vectorized load/store:

 For each work item, it is recommended to load data in chunk of multiple bytes, e.g., 64-
bit/128-bit, the bandwidth can be better utilized.

 For example, multiple 8-bit data can be manually packed into one element (e.g. 64-
bit/128-bit), which is loaded using vloadn, and then unpacked using as_typeN function
(e.g., as_char16).

 See the vectorized operation example in Section 9.2.3.

 For optimal SP to L2 bandwidth performance, load/store memory address should be 32-bit
aligned.

 There are two methods to do vectorized load/store:

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 43

 Use built-in function (vload/vstoren), which is well defined in OpenCL.

 Alternatively, pointer cast can be used to do vectorized load/store as follows:
 char *p1; char4 vec;
 vec = *(char4 *)(p1 + offset);

 It is recommended to use vectorized load/store instructions that take up to 4 components.
Vectorized load of data type with more than 4 components would be divided into multiple
load/store instructions with each of them taking no more than 4 components.

 Avoid loading too many data in one work item.

 Loading too many data may result in higher register footprints, which could lead to a
smaller work group size and hurt performance. In the worst cases, it may cause register
spilling, i.e., compiler must use system RAM to store variables.

NOTE: Vectorized ALU calculations can also improve performance, though generally not as much as the
one from vectorized memory load/store.

7.2.3 Optimal data type
Data type is important as it affects not just memory traffic but also the ALU operations. Here are
a few rules for data type:

 Check data types in each stage of the application pipeline and make sure that the data type
used is consistent across the entire pipeline.

 Use shorter data types if possible to reduce memory fetch/bandwidth, and increase the
number of ALU available for execution.

7.2.4 16-bit floating (half) vs. 32-bit floating
Using of half data type instead of floating data type is highly recommended as Adreno GPUs
have dedicated hardware to accelerate half data type calculation. The gflops of half ALUs is
almost twice of full ALUs. Here are some rules:

 16-bit half has limited precision support. It can only precisely represent data within much
narrowed range.

 For example, it can only accurately represent [0, 2048] on integer values.

 Convert half to float for calculation if half data calculation causes unacceptable precision
loss. But store the results as half data type.

7.3 Atomic functions
A set of local and global atomic functions are defined in OpenCL, and Adreno GPUs natively
support all of them in hardware. Here some rules when using atomic functions:

 Avoid frequently updating a single global atomic memory address by work items from single
or multiple workgroups, as atomic operations are serialized operations and their performance
is usually not good as parallel operations.

 Try to use local atomic first and have a single update to global memory atomically.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 44

7.4 Zero copy
Adreno OpenCL provides a few mechanisms to avoid costly memory copy that could occur at
host side. Dependent on how the memory object is created, there are a few different options to
avoid excessive copy.

7.4.1 Use map over copy
Assume that the OpenCL application has full control over the data flow, i.e., the target and source
memory object creation are all managed by the OpenCL application. This is the simplest case and
memory copy can be avoided by using the steps as follows:

 When creating a buffer/image object, use the flag CL_MEM_ALLOC_HOST_PTR, and follow the
steps as follows:

 First set cl_mem_flags input in clCreateBuffer:
cl_mem Buffer = clCreateBuffer(context,
 CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR,
 sizeof(cl_ushort) * size,
 NULL,
 &status);

 Then use the map function to return a pointer to the host:
cl_uchar *hostPtr = (cl_uchar *)clEnqueueMapBuffer(
 commandQueue,
 Buffer,
 CL_TRUE,
 CL_MAP_WRITE,
 0,
 sizeof(cl_uchar) * size,
 0, NULL, NULL, &status);

 Host updates the buffer using the pointer hostPtr.

– For example, host can fill camera data or read data from disk into the buffer

 Unmapped the object:
 status = clEnqueueUnmapMemObject(
 commandQueue,
 Buffer,
 (void *) hostPtr,
 0, NULL, NULL);

 The object can be used by OpenCL kernels.

CL_MEM_ALLOC_HOST_PTR is the only method to avoid copying of data in this scenario. With the
other flags, such as CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR, driver will have to do
additional memory copy for GPU to access.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 45

7.4.2 Avoid memory copy for objects allocated not by OpenCL

7.4.2.1 ION memory extensions
If a memory object is initially created outside the scope of the OpenCL API and is allocated using
ION/Gralloc, the cl_qcom_ion_host_ptr extension can be used to create a buffer/image
object, which maps its ION memory to GPU accessible memory without incurring extra copy.

NOTE: Use of ION memory through the QTI extension to avoid memory copy is illustrated by a detailed
sample code that can be provided on request.

7.4.2.2 QTI Android native buffer (ANB) extension
In many camera and video processing use cases, ANB (allocated by gralloc) must be shared.
Sharing is possible because the buffers are based on ION. However, to use the ION path, the
developer needs to extract internal handles from these buffers, which requires access to QTI’s
internal headers. The cl_qcom_android_native_buffer_host_ptr extension offers a more
straightforward way to share ANBs with OpenCL without needing access to QTI headers. This
enables ISVs and other third-party developers to implement zero copy technique for ANBs.

NOTE: A sample that illustrates use of the cl_qcom_android_native_buffer_host_ptr extension
can be provided on request.

7.4.2.3 Using standard EGL extensions
The cl_khr_egl_image extension creates an OpenCL image from an EGL image. The main
benefits that come with this are:

 It is standard; code written to use this technique will most likely work for other GPUs that
support it.

 EGL/CL extensions (cl_khr_egl_event and EGL_KHR_cl_event) that are designed to
work with this extension make more efficient synchronization possible.

 YUV processing is a little easier with the EGL_IMG_image_plane_attribs extension.

7.5 Improve cache usage
To have a good cache usage, the following rules should be followed:

 Check cache thrashing and cache usage efficiency. Snapdragon Profiler can provide cache
access information, such as the number of bytes for load/store and cache hit/miss ratio.

 If the number of bytes to load into UCHE is a lot higher than what is expected by the
kernel, it is possible that there is cache thrashing.

 Metrics such as the L1/L2 hit/miss ratios can tell how well the cache is used.

 Avoid thrashing by doing the following:

 Adjust the workgroup size, such as reduce workgroup size

 Change access pattern, e.g., change the dimensionality of kernel.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 46

 If there is cache thrashing when using loops, adding atomics or barrier in the loop may
reduce the chances of thrashing.

7.6 CPU cache operations
For memory objects that are cacheable, the OpenCL driver must flush and/or invalidate the CPU
cache at appropriate times. This ensures that both the CPU and the GPU see the most current
copy of the data when they attempt to access it. For example, the CPU cache must be invalidated
when mapping the output buffer of a kernel for reading by the host CPU. The OpenCL driver has
a sophisticated CPU cache management policy which attempts to minimize the number of cache
operations by tracking data visibility on a per memory object basis and by deferring operations to
the extent possible. For example, there could be a CPU cache flush on an input buffer right before
a kernel is launched.

CPU cache operations have a very measurable cost, which can be observed as a delta between
CL_PROFILING_COMMAND_QUEUED and CL_PROFILING_COMMAND_SUBMIT for
clEnqueueNDRangeKernel, as shown in Figure 4-1. In some cases, the execution time of
clEnqueueMapBuffer/Image and clEnqueueUnmapBuffer/Image can increase. The cost of
a CPU cache operation generally increases linearly along with memory object size.

To minimize the cost of CPU cache operations, the application pipeline should be structured so
that processing is not moved back and forth between CPU and GPU. In addition, the application
should allocate memory objects in such a way that the data which is subject to back and forth
CPU and GPU access is in a different memory object from the data which has only one access
transition.

The memory objects should be created using the CPU cache policy that is appropriate for their
intended usage. When allocating memory for buffer objects or image objects, the driver will
select the CPU cache policy. The default CPU cache policy is write-back. However, if either
CL_MEM_HOST_WRITE_ONLY or CL_MEM_READ_ONLY is specified in flags, the driver will assume
that the application does not intend to read the data using the host CPU. In that case, the CPU
cache policy is set to write-combine.

For externally allocated memory objects such as with ION and ANB mechanisms, the application
has more direct control over CPU cache policy. When importing these objects into OpenCL the
application must set the CPU cache policy flag correctly.

7.7 Use of SVM
The Adreno A5x GPUs support coarse-grain SVM, a key feature in the OpenCL 2.0 full profile.
With SVM, the host and device memory addresses are identical. SVM feature in OpenCL 2.0
allows the memory to be shared across host and device easily, and accessing the host pointer on
OpenCL device is now possible.

For coarse-grain SVM, accessing the memory by host or devices is limited at the synchronization
points (map/unmap). This can greatly facilitate applications that need to work with pointer based
data structure across host and device.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: memory

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 47

7.8 Best practices to reduce power/energy consumption
Power and energy is a major factor for mobile applications. Applications with optimal
performance may not have the best power/energy performance and vice versa. Therefore, it is
important to understand power/energy and performance requirement. There are several tips on
reducing power and energy consumption for OpenCL:

 Try all means to avoid memory copy, for example, using ION memory to achieve zero-copy,
and using CL_MEM_ALLOC_HOST_PTR when creating buffers with clCreateBuffer. Also
avoid using the OpenCL APIs that do data copy.

 Minimize the memory transaction between host and device. This can be achieved by storing
memory in constant memory or local memory, using shorter data type, reducing data
precision, and eliminating private memory usage, etc.

 Optimize kernels and improve their performance. The faster a kernel can run, generally the
less energy or power it would consume.

 Minimize software overhead. For example, use event-driven pipeline to reduce the host and
device communication overhead. Avoid creating too many objects, and avoid creating or
releasing objects in between kernel execution.

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 48

8 Kernel performance optimization

This section presents tips on kernel optimization.

8.1 Kernel fusion or splitting
A complex application may contain a lot of stages. For OpenCL porting and optimization, one
may ask how many kernels should be developed. It is hard to answer as there are many factors
involved. Here are a few high-level criteria:

 Good balance between memory and compute

 Enough waves to hide latency

 No register spilling

These could be achieved by doing the followings:

 Split a big kernel into multiple small kernels, if doing this yields better data parallelization.

 Fuse multiple kernels into one kernel (kernel fusion), if memory traffic can be reduced and
parallelization can be maintained, e.g., workgroup size is reasonably large.

8.2 Compiler options
OpenCL supports some compiler options that are defined in Section 5.6.4 of The OpenCL
Specification found in References. Compiler options are passed in through the APIs
clCompileProgram and clBuildProgram. Multiple options can be combined:

clBuildProgram(myProgram,
 numDevices,
 pDevices,
 “-cl-fast-relaxed-math ”,
 NULL,
 NULL);

With these options, developers can enable some functionality for its own purpose. For example,
using -cl-fast-relaxed-math allows the kernel to be built using fast math rather than the
OpenCL conformant math that has much higher precision requirement per OpenCL specification.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: kernel

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 49

8.3 Conformant vs. fast vs. vs. native math functions
The OpenCL standard defines many math functions in the OpenCL C language and by default all
the math functions must meet the IEEE 754 single precision floating-point math requirements, as
required by the OpenCL specification. Adreno GPUs have a built-in hardware module, the
elementary function unit (EFU), to accelerate some primitive math functions. Many math
functions that are not directly supported by EFU have been either optimized by combining EFU
and ALU operations, or emulated using complex algorithms by the compiler. Table 8-1 shows a
list of OpenCL-GPU math functions categorized based on their relative performance. It is a good
practice to use the high-performance ones, for example, functions in category A.

Table 8-1 Performance of OpenCL math functions (IEEE 754 conformant)

Category Implementation Functions (refer to the OpenCL standard for more details)

A Simple using ALU
instructions only

ceil, copysign, fabs, fdim, floor, fmax,
fmin, fract, frexp, ilogb, mad, maxmag,
minmag, modf, nan, nextafter, rint, round,
trunc

B EFU only or EFU plus
simple ALU instructions

asin, asinpi, atan, atanh, atanpi, cosh, exp,
exp2, rsqrt, sqrt, tanh

C Combination of ALU,
EFU, and bit
maneuvering

acos, acosh,acospi,asinh,atan2, atan2pi,
cbrt, cos, cospi, exp10, expm1, fmod, hypot,
ldexp, log, log10, log1p, log2, logb, pow,
remainder, remquo, sin, sincos, sinh, sinpi

D Complex software
emulation

erf, erfc, fma, lgamma, lgamma_r, pown, powr,
rootn, tan, tanpi, tgamma

Alternatively, developers may choose to use native or fast math instead of conformant math
functions, if the application is not precision sensitive. Table 8-2 summarizes the three options for
using math functions.

 For fast math, enable -cl-fast-relaxed-math in the clBuildProgram call.

 Use native math functions:

 Math functions that have native implementation are native_cos, native_exp,
native_exp2, native_log, native_log2, native_log10, native_powr,
native_recip, native_rsqrt, native_sin, native_sqrt, native_tan;

 Here is an example to use native math:

– Original: int c = a / b; // Both a and b are integers

– Use native instruction: int c = (int)native_divide((float)(a),
(float)(b));

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: kernel

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 50

Table 8-2 Math function options based on precision/performance

Math
functions Definition How to use Precision

requirement Performance Typical use
cases

Conformant Follow IEEE 754
single precision
floating-point
math
requirement

Default Strict Low Scientific
computing,
precision
sensitive use
cases

Fast Fast math with
lower precision

Kernel build option:
-cl-fast-
relaxed-math

Medium Medium Many image,
video, and
vision use
cases

Native Directly
calculated by
hardware

Use
native_function
instead of function in
kernel

Low, vendor
dependent

High Image, video
and vision use
cases if not
sensitive to
precision loss

8.4 Loop unrolling
Loop unrolling is generally a good practice as it could reduce instruction execution cost and
improve performance. The Adreno compiler can typically unroll loops automatically based on
some heuristics. However, it is also possible that the compiler may choose not to fully unroll
loops, based on factors such as register allocation budget, or the compiler cannot unroll it due to
lack of some knowledge. In these cases, developer may give the compiler a hint, or manually
force it to unroll the loops as follows:

 A kernel may give a hint by using __attribute__((opencl_unroll_hint)) or
__attribute__((opencl_unroll_hint(n))).

 Alternatively, a kernel can use directive #pragma unroll to unroll loops.

 The last option is to manually unroll loops

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: kernel

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 51

8.5 Avoid branch divergence
Generally, GPUs are not efficient when work items in the same wave follow different execution
paths. For divergent branches, some work items may have to be masked, resulting in lower GPU
occupancy, as shown in Figure 8-1. Also, the conditional check code like if-else usually
invokes the control flow hardware logic which is expensive.

Figure 8-1 Pictorial representation of divergence across two waves

There are some methods to avoid or reduce divergence and conditional checks. At the algorithm
level, one may group the work items that fall into one branch into one nondivergent wave. At the
kernel level, some simple divergent/conditional check operations can be converted to fast ALU
operations. One example is shown in section 9.2.6, where a ternary operation handled by the
expensive control flow logic is converted to an ALU operation. Another method is to use
functions like select, which may use fast ALU operations instead of the control flow logic.

8.6 Handle image boundaries
Many operations may access pixels out of image’s boundaries, e.g., filtering, transform, etc. To
better handle boundaries, the following options should be considered:

 Pad the image upfront, if possible.

 Use image object with proper samplers (texture engine handles it automatically).

 Write separate kernels to handle boundaries, or let the CPU process the boundary.

8.7 32-bit vs. 64-bit GPU memory access
From the Adreno A5x GPUs, the 64-bit OS is becoming dominant, and many Adreno GPUs are
enabled to support the 64-bit OS. The most important change in the 64-bit OS is that the memory
space can be well over 4GB and the CPU supports 64-bit instruction sets.

While the GPU can access 64-bit memory space, its use incurs extra complexity and there may be
performance penalty.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: kernel

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 52

8.8 Avoid use of size_t
A 64-bit memory address poses complication for OpenCL kernel compilation in many cases and
developers need to be careful. It is highly recommended to avoid defining variable as type of
size_t inside kernels. For the 64-bit OS, a variable defined as size_t inside kernels may have
to be treated as 64-bit long. Adreno GPUs must use two 32-bit registers to emulate 64-bit.
Therefore, having size_t type of variables requires more register resources, which often
translates to performance degradation due to less active waves and smaller workgroup sizes. So,
developers should use 32-bit or shorter data types instead of size_t.

For the built-in functions in OpenCL that return size_t, the compiler may try to derive and limit
the scope based on its knowledge. For example, get_local_id returns the result as size_t,
though local_id is never more than 32-bit. In this case, the compiler uses a short data type
instead. However, it is generally a good practice to provide the compiler the best knowledge on
data type, so that it can generate the optimal code.

8.9 Generic memory address space
OpenCL 2.0 introduces a new feature called generic memory address space, in which a pointer
does not have to specify its address space. Prior to OpenCL 2.0, a pointer must specify its
memory address space, which can be local, private, or global. With generic memory address
space, a pointer could be dynamically assigned to different memory address spaces.

While this feature allows developers to reduce their code base and reuse existing code, using of
generic memory address space may have slight performance penalty because the GPU SP
hardware needs to figure out the real memory space dynamically. It is recommended to precisely
define the memory address space if developers clearly know its memory space. This would
reduce ambiguity for compiler, and result in better machine code and improved performance.

8.10 Miscellaneous
Many other optimization tips, which look minor but could improve kernel performance, are as
follows:

 Precalculate values that do not change within the kernels.

 It is wasteful to calculate a value that can be precalculated outside of the kernels.

 Precalculated values can be passed to kernel through kernel arguments or with #define.

 Use the fast integer built-in functions. Use mul24 for 24-bit integer multiplication, and
mad24 for 24-bit integer multiplication and accumulation.

 Adreno GPUs have native hardware support for mul24, while the 32-bit integer
multiplication is emulated using more instructions.

 If there are integer numbers within 24-bit range, using mul24 is faster than direct 32-bit
multiplication.

 Reduce EFU functions.

 For example, the code like r=a/select(c,d,b<T), where a, b,and T are float
variables, c and d are constant, can be rewritten as r=a*select(1/c,1/d, b<T),
which avoids the reciprocal EFU function as 1/c and 1/d can be derived at compilation
time by the compiler.

Qualcomm Snapdragon OpenCL General Programming and Optimization Performance optimization: kernel

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 53

 Avoid divide operations, especially integer divide.

 Integer divide is extremely expensive on Adreno GPUs.

 Instead of using divide, do a reciprocal operation using native_recip, as described in
Section 8.3.

 Avoid integer module operation, which is expensive.

 For constant arrays, such as lookup tables, filter taps, etc., declare them outside the kernel
scope.

 Use mem_fence functions to split/group code sections.

 The compiler has complex algorithms to generate the optimal code from global
optimization perspective.

 mem_fence can be used to prevent the compiler from shuffling/mixing the code before
and after it.

 mem_fence allows developers to manipulate some portion of the code for profiling and
debugging.

 Use bit shift operations instead of multiplication.

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 54

9 OpenCL optimization case studies

In this chapter, a few examples are presented to demonstrate how to optimize using the
techniques discussed in early chapters. In addition to a few simple code snippet demonstrations,
two well-known image processing filters, Epsilon filter and Sobel filters, are step-by-step
optimized by using many of the practices discussed in previous chapters.

9.1 Application sample code

9.1.1 Improve algorithm

This example demonstrates how to simplify an algorithm to optimize its performance. Given an
image, apply a simple 8x8 box blurring filter on it.

Original kernel before optimization:
__kernel void ImageBoxFilter(__read_only image2d_t source,
 __write_only image2d_t dest,
 sampler_t sampler)
{
 ... // variable declaration
 for(int i = 0; i < 8; i++)
 {
 for(int j = 0; j < 8; j++)
 {
 coor = inCoord + (int2) (i - 4, j - 4);
 // !! read_imagef is called 64 times per work item
 sum += read_imagef(source, sampler, coor);
 }
 }
 // Compute the average
 float4 avgColor = sum / 64.0f;
 ... // write out result
}

To reduce texture access, the above kernel is split into two passes. The first pass calculates the
2x2 average for each work item and saves the result to an intermediate image. The second pass
uses the intermediate image for the final calculation.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 55

Modified kernel:
// First pass: 2x2 pixel average
__kernel void ImageBoxFilter(__read_only image2d_t source,
 __write_only image2d_t dest,
 sampler_t sampler)
{ ... // variable declaration
 // Sample an 2x2 region and average the results
 for(int i = 0; i < 2; i++)
 {
 for(int j = 0; j < 2; j++)
 {
 coor = inCoord - (int2)(i, j);
 // 4 read_imagef per work item
 sum += read_imagef(source, sampler, inCoord - (int2)(i, j));
 }
 }
 // equivalent of divided by 4, in case compiler does not optimize
 float4 avgColor = sum * 0.25f;
 ... // write out result
}
// Second Pass: final average
__kernel void ImageBoxFilter16NSampling(__read_only image2d_t source,
 __write_only image2d_t dest,
 sampler_t sampler)
{
 ... // variable declaration
 int2 offset = outCoord - (int2)(3,3);
 // Sampling 16 of the 2x2 neighbors
 for(int i = 0; i < 4; i++)
 {
 for(int j = 0; j < 4; j++)
 {
 coord = mad24((int2)(i,j), (int2)2, offset);
 // 16 read_imagef per work item
 sum += read_imagef(source, sampler, coord); }
 }
 // equivalent of divided by 16, in case compiler does not optimize
 float4 avgColor = sum * 0.0625;
 ... // write out result
}

The modified algorithm accesses the image buffer 20 (4+16) times per work item, which is
significantly less than the original 64 read_imagef accesses.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 56

9.1.2 Vectorized load/store

This example demonstrates how to do vectorized load/store in Adreno GPUs to better utilize the
bandwidth.

Original kernel before optimization:
__kernel void MatrixMatrixAddSimple(const int matrixRows,
 const int matrixCols,
 __global float* matrixA,
 __global float* matrixB,
 __global float* MatrixSum)
{
 int i = get_global_id(0);
 int j = get_global_id(1);
 // Only retrieve 4 bytes from matrixA and matrixB.
 // Then save 4 bytes to MatrixSum.
 MatrixSum[i*matrixCols+j] =
 matrixA[i*matrixCols+j] + matrixB[i*matrixCols+j];
}

Modified kernel:
__kernel void MatrixMatrixAddOptimized2(const int rows,
 const int cols,
 __global float* matrixA,
 __global float* matrixB,
 __global float* MatrixSum)
{
 int i = get_global_id(0);
 int j = get_global_id(1);
 // Utilize built-in function to calculate index offset
 int offset = mul24(j, cols);
 int index = mad24(i, 4, offset);

 // Vectorize to utilization of memory bandwidth for performance gain.
 // Now it retieves 16 bytes from matrixA and matrixB.
 // Then save 16 bytes to MatrixSum
 float4 tmpA = (*((__global float4*)&matrixA[index])); // Alternatively
vload and vstore can be used in here
 float4 tmpB = (*((__global float4*)&matrixB[index]));
 (*((__global float4*)&MatrixSum[index])) = (tmpA+tmpB);
 // Since ALU is scalar based, no impact on ALU operation.
}

The new kernel is doing vectorized load/store using float4. The global work size in the newer
kernel should be ¼ of the original kernel because of this vectorization.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 57

9.1.3 Use image instead of buffer

This example calculates a dot product for each pair, given 5 million pairs of vectors. The original
code uses a buffer object, which is modified to use a texture object instead (read_imagef) to
improve frequent data access. It is a simple example, but the technique can be applied to many
cases in which buffer object access is not as efficient as texture object access.

Original kernel before optimization Modified kernel for optimization

__kernel void DotProduct(__global const
float4 *a, __global const float4
*b,__global float *result){// a and b
contain 5 million vectors each
// Arrays are stored as linear buffer
in global memory
 result[gid] = dot(a[gid], b[gid]);
}

__kernel void DotProduct(__read_only
image2d_t c, __read_only image2d_t d,
__global float *result){
// Image c and d are used to hold the data
instead of linear buffer
// read_imagef goes through the texture
engine
 int2 gid = (get_global_id(0),
get_global_id(1));
 result[gid.y * w + gid.x] =
dot(read_imagef(c, sampler, gid),
read_imagef(d, sampler, gid));
}

9.2 Epsilon filter
Epsilon filter is used widely in image processing for the reduction of mosquito noise, which is a
type of impairment occurring at high frequency region such as edges in images. The filter is
essentially a nonlinear and point-wise low pass filter with space-varying support, and only the
pixels with certain threshold are filtered.

In this implementation, the Epsilon filter is applied only on the intensity (Y) component of YUV
images, as the noise is mainly visible in there. Also, it is assumed that the Y component is
consecutively stored (NV12 format), which is separated from the UV component. There are two
basic steps as illustrated by Figure 9-1.

 Given a pixel to be filtered, calculate the absolute difference value between the central pixel
and each pixel in its neighboring 9x9 region.

 If the absolute difference is below a threshold, the neighboring pixel value is used for
averaging. Note the threshold usually is a constant predefined in the application.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 58

Figure 9-1 Epsilon filter algorithm

9.2.1 Initial implementation
This application targets YUV images with resolution of 3264x2448 (width = 3264, height =2448)
with 8-bit per pixel. The performance numbers reported here are from Snapdragon 810
(MSM8994, Adreno 430) at performance mode.

Here are the initial implementation parameters and strategy:

 Use OpenCL image object instead of buffer

 Using image over buffer can avoid some boundary check and leverage the L1 cache in
Adreno GPUs

 Use CL_R|CL_UNORM_INT8 image format/data type.

 Single channel as this is for Y component only, and pixels read into SP is normalized into
[0, 1] by the built-in texture pipe in Adreno GPUs.

 Each work item produces one output pixel

 Using 2D kernel and the global work size is set to [3264, 2448]

In the implementation, each work item needs to access 81 floating point pixel. The performance
on the Adreno A430 GPU is used as the baseline for further optimization.

9.2.2 Data pack optimization
By comparing the amount of computation and data load, it is obvious that this is a memory bound
use case. Thus, the main optimization should be how to improve the data load efficiency.

The first thing to note is that, using 32-bit floating (fp32) to represent pixel values is a waste of
memory. For many image processing algorithms 8-bit or 16-bit data type could be sufficient.
Since Adreno GPUs have native hardware support for 16-bit float data type, i.e., half or fp16, the
following optimization options can be applied:

 Use 16-bit half data type instead of 32-bit float

 Each work item now accesses 81 half data

 Use CL_RGBA|CL_UNORM_INT8 image format/data type.

 Using CL_RGBA to load 4 channels to better utilize the TP bandwidth.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 59

 Replace read_imagef with read_imageh. TP converts the data into 16-bit half
automatically.

 Each work item

 Reads three half4 vectors per row

 Output one processed pixel

 Number of memory access per output pixel: 3x9=27 (half4)

 Performance improvement: 1.4x

Figure 9-2 Data pack using 16-bit half (fp16) data type

9.2.3 Vectorized load/store optimization
In the previous step, only one pixel is output with so many neighboring pixels loaded. With a few
extra pixels loaded, more pixels can be filtered as follows:

 Each work item

 Reads three half4 vectors per row

 Output four pixels

 Number of memory access per output pixel: 3x9/4 = 6.75 (half4)

 Global work size: (width/4) x height.

 Loop unrolling for each row

 Inside each row, sliding window method is used.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 60

Figure 9-3 Filtering more pixels per work item

Figure 9-3 illustrates the basic diagram of how multiple pixels are processed with extra pixels
loaded. Here are the steps:

Read center pixel c;
For row = 1 to 9, do:
read data p1;
Perform 1 computation with pixel c;
read data p2;
Perform 4 computations with pixel c;
read data p3;
Perform 4 computations with pixel c;
end for
write results back to pixel c.

After this step, the performance is improved by 3.4x from the baseline.

9.2.4 Further increase work load per work item
One may expect more performance boost by increasing the workload per work item. Here are the
options:

 Read one more half4 vector and increase the output pixel number to 8

 Global work size: width/8 x height

 Each work item

 Reads four half4 vectors per row

 Outputs eight pixels

 Number of memory access per output pixel: 4x9/8 = 4.5 (half4)

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 61

Number of memory access per output pixel: 4x9/8 = 4.5 (half4)

Figure 9-4 Process 8 pixels per work item

These changes lead to slight performance improvement by 0.1x. Here are the reasons why it does
not work well:

 There is no much changes on cache hit ratio, which is already very good in previous step.

 More registers are used and less waves, which hurts the parallelism and latency hiding.

For experimental purpose, one may load even more pixels as follows:

 Read even more half4 vectors and increase the number of output pixels to 16.

 Global work size: width/16 x height

Figure 9-5 shows that each work item does the following:

 Reads 6 half4 vectors per row

 Outputs 16 pixels

 Number of memory access per output pixel: 6x9/16 = 3.375 (half4).

After these changes, the performance deteriorates from 3.4x to 0.5x of the baseline! Loading
more pixels into one kernel causes register spilling, which seriously hurt the performance.

Figure 9-5 Process 16 pixels per work item

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 62

9.2.5 Use local memory optimization
Local memory has a much shorter latency than global memory as it is on-chip memory. One
choice is to load the pixels into local memory, and avoid repeatedly loading from global memory.
In addition to the center pixel to be processed, the surrounding pixels are also required for the 9x9
filtering and thus loaded into local memory, which is shown in Figure 9-6.

Figure 9-6 Using local memory for Epsilon filtering

Table 9-1 lists the setup of two cases and their performance. The overall performance is
considerably better than the original one. However, they do not beat the best number from
Section 9.3.4.

Table 9-1 Performance from using local memory

 Case 1 Case 2

Workgroup 8x16 8x24
Local memory size (byte) 10x18x8 =1440 10x26x8 = 2080
Performance 2.4x 2.8x

As discussed in Section 7.1.1, use of local memory often requires barrier synchronization inside
workgroups and it does not necessarily yield better performance than global memory. Instead, it
may perform worse if there is too much overhead. In this case, global memory could be a better
choice if it has high cache hit ratio.

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 63

9.2.6 Branch operations optimization
The Epsilon filter needs to do comparison between pixels as follows:

Cond = fabs(c -p) <= (half4)(T);
sum += cond ? p : consth0;
cnt += cond ? consth1 : consth0;

The ternary operator ?: incurs some divergence in hardware as not all fibers in a wave go to the
same execution branch. The branching operation can be replaced by ALU operations as follows:

Cond = convert_half4(-(fabs(c -p) <= (half4)(T)));
sum += cond * p;
cnt += cond;

This optimization is applied on top of the one described in Section 9.2.2 and the performance is
improved to 5.4x from 3.4x of the baseline!

The key difference is that the new code is executed in the highly parallelized ALU and all fibers
in the wave essentially execute the same piece of code, though the variable Cond may have
different values, while the old one is using some costly hardware logic to handle the divergence.

9.2.7 Summary
The optimization steps and their performance numbers are summarized in Table 9-2. Initially, the
algorithm is memory bounded. By doing data packing and vectorized load, it becomes more ALU
bounded. In summary, the key optimization for this use case is to load data in an optimal way. A
lot of memory bound use cases could be accelerated by using similar techniques.

Table 9-2 Summary of optimizations and performance

Step Optimizations
Image
format

Data type
In kernel

Vector
processing

Speedup

1 Initial GPU implementation CL_R |
CL_UNORM_INT8

float

1-pixel/work
item

2 Use half type in kernel CL_R |
CL_UNORM_INT8

half

1.0 X

3 Data packing

CL_RGBA |
CL_UNORM_INT8

1.4 X
4 Vectorized processing

Loop unrolling
4-pixel/work
item
(half4 output)

3.4 X

5 More pixels per work item 8-pixel/work
item

3.5 X

6 More pixels per work item 16-pixel/work
item

0.5 X

4-1 Use LM
(workgroup size: 8x16)

2.4 X

4-1-1 Use LM, increase workgroup
size, workgroup size: 8x24

2.8 X

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 64

Step Optimizations
Image
format

Data type
In kernel

Vector
processing

Speedup

4-1-2 Remove branching
operations Use LM,
workgroup size: 8x24

4-pixel/work
item

2.9 X

4-2 Remove branching
operations

5.4 X

The OpenCL performance of Epsilon filter with three different resolutions are shown in Table 9-
3. It shows that the performance gaining factor increases for larger images. For an image of
3264x2448, 5.4x performance boost is observed, as comparing to 4.3x for an image of 512x512
using the initial OpenCL code. This is understandable, as there is fixed cost associated with
kernel execution regardless of workload, and its weight in the overall performance becomes
lower as the workload is larger.

Table 9-3 Performance profiled for images with different resolutions
Image resolution 512x512 1920x1080 3246x2448

Number of pixels 0.26MP 2MP 8MP

Device
(A430)

GPU initial results 1x 1x 1x

GPU optimized 4.3x 5.2x 5.4x

9.3 Sobel filter
Sobel filter, also called Sobel operator, is used in many image processing and computer vision
algorithms for edge detection. It uses two 3x3 kernels to combine with the original image to
approximate the derivative. There are two kernels: one kernel is for horizontal direction and the
other is for vertical direction, as shown in Figure 9-7.

Figure 9-7 Two directional operations in Sobel filter

9.3.1 Algorithm optimization
The Sobel filter is a separable filter which can be decomposed as follows:

Figure 9-8 Sobel filter separability

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 65

Compared with a nonseparable 2D filter, a 2D separable filter can lower the complexity from
O(n2) to O(n). It is highly desirable to use separable filters instead of nonseparable due to
2D’s high complexity and computational cost.

9.3.2 Data pack optimization
Although computation is reduced considerably for the separable filter, the number of pixel
required for filtering each point is the same, i.e., 8 neighboring pixels plus the center pixel for this
3x3 kernel. It is easily seen that this is a memory bound problem. So how to effectively load the
pixels into GPU is the key for performance. Three options are as illustrated in the following
figures:

Figure 9-9 Process one pixel per work item: load 3x3 pixels per kernel

Figure 9-10 Process 16x1 pixels: load 18x3 pixels

Figure 9-11 Process 16x2 pixels, load 18x4 pixels

The following table summarizes the total number of bytes and average bytes required in each
case. For the 1st case in Figure 9-9, each work item only processes Sobel filtering on one pixel.
As the number of pixels per work item increases, the amount of data to be loaded is reduced for
cases shown in Figure 9-10 and Figure 9-11. This often leads to reduction of data traffic from
global memory to GPU and results in better performance.

Table 9-4 Amount of data load/store for the three cases

 One pixel/work item 16x1 pixels/work item 16x2 pixels/work item

Total input bytes 9 54 72
Average input bytes 9 3.375 2.25
Average store bytes 2 2 2

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 66

9.3.3 Vectorized load/store optimization
The number of load/store for the cases of 16x1 and 16x2 can be further reduced by using the
vectorized load store function in OpenCL, such as float4, int4, and char4, etc. Table 9-5
shows the number of load/store requests for the vectorized cases (assuming the pixel data type is
8-bit char).

Table 9-5 Number of loads and stores by using vectorized load/store

 16x1 Vectorized 16x2 vectorized

Loads 6/16=1.375 8/32=0.374
stores 2/16=0.125 4/32=0.125

A code snippet doing the vectorized load is as follows:

short16 line_a = convert_short16(as_uchar16(*((__global uint4
*)(inputImage+offset))));

There are two pixels to be loaded at the boundary as follows:

short2 line_b = convert_short2(*((__global uchar2 *)(inputImage + offset +
16)));

NOTE: Increases in the number of pixels processed by each work item may cause serious register
footprint pressure, resulting in register spilling into private memory and performance
degradation.

9.3.4 Performance and summary
After applying the two optimization steps, significant performance boost is observed, as shown in
Figure 9-12, in which the original (single pixel/work item) on MSM8992 (Adreno 418) is
normalized to 1.

Figure 9-12 Performance boost by using data pack and vectorized load/store

0.0

10.0

20.0

8992 8994 8996

Sobel optimization

original optimized 16x1 optimized 16x4

Qualcomm Snapdragon OpenCL General Programming and Optimization OpenCL optimization case studies

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 67

To summarize, here are the key points for this use case optimization.

 Data packing improves memory access efficiency

 Vectorized load/store is key to reduce memory traffic

 Short type is preferred over integer or char type in this case

In this case, local memory is not used. The data pack and vectorized load/store have minimized
the overlap of data that can be reused. Therefore, using local memory does not necessarily
improve the performance.

There could be other options to boost the performance, for example, using texture over global
buffer.

9.4 Summary
A few examples and code snippet are provided in this chapter to demonstrate the optimization
rules presented in previous chapters and how the performance has changed. Developers should try
to follow the steps with real devices. It is advised that not all results can be exactly reproduced
due to compiler and driver upgrades. But generally, similar performance boost should be
achieved with these optimization steps.

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 68

10 Summary

This document intends to provide a detailed guidance on how to optimize OpenCL programs with
Adreno GPUs. A good amount of information has been provided to help developers understand
the OpenCL fundamentals and Adreno architectures, and most importantly, master OpenCL
optimization techniques.

OpenCL optimization is often challenging and requires a lot of trial and error. As each vendor
may have its own best practices of doing the same task, it is important to read through and have
in-depth understanding of the guide and practices for Adreno GPUs. Many factors that look
minor could have significant performance impacts. These are unfortunately not easy to tackle
without hands-on exercise and practices.

Due to time constraints and other factors, some topics are not covered. Adreno GPUs support a
lot of extensions that can significantly boost performance and add extra functionalities. For
instance, recent Adreno GPUs support some proprietary image formats which raw image and
video data captured from image signal processor (ISP) can be compressed to for direct and
efficient processing. This could save some manual handling as well as improve bandwidth usage.

Future releases of this document will include more topics.

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 69

A How to enable performance mode

To enable performance mode, root access is usually required for Android devices(adb root;
adb remount). Note that these commands need to rerun if the system restarts.

A.1 Adreno A3x GPU

A.1.1 CPU settings

/*disabling mpdecision keeps all CPU cores ON*/
adb shell stop mpdecision
/*Set performance mode for all CPU cores. In this case, a dual core CPU*/
adb shell "echo performance >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor"
adb shell "echo 1 > /sys/devices/system/cpu/cpu1/online"
adb shell "echo performance >
/sys/devices/system/cpu/cpu1/cpufreq/scaling_governor"

A.1.2 GPU settings:
Disable power scaling policy:

 Newer targets support the following method to disable power scaling:

"echo performance > /sys/class/kgsl/kgsl-3d0/devfreq/governor"

 Legacy targets support the following method to disable power scaling:

/*Disable power scaling policy for GPU*/
adb shell "echo none > /sys/class/kgsl/kgsl-3d0/pwrscale/policy"

Qualcomm® Snapdragon™ Mobile Platform OpenCL General Programming and Optimization How to enable
performance mode

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 70

Disable GPU sleep and force the GPU clocks/bus vote/power rail to always on:

 Keep clocks on until the idle timeout forces the power rail off.

 Keep the bus vote on permanently.

 Keep the graphics power rail on permanently.

The command sequence for newer targets is:

adb shell “echo 1 > /sys/class/kgsl/kgsl-3d0/force_clk_on”
adb shell “echo 1 > /sys/class/kgsl/kgsl-3d0/force_bus_on”
adb shell “echo 1 > /sys/class/kgsl/kgsl-3d0/force_rail_on”

The command sequence for legacy targets is:

/*Disable GPU from going into sleep*/
adb shell "echo 0 > /sys/class/kgsl/kgsl-3d0/pwrnap"
/*Or Set a very high timer value for GPU sleep interval*/
adb shell "echo 10000000 > /sys/class/kgsl/kgsl-3d0/idle_timer"

A.2 Adreno A4x GPU and Adreno A5x GPU

adb shell "cat /sys/class/kgsl/kgsl-3d0/gpuclk"
adb shell "echo 0 > /sys/class/kgsl/kgsl-3d0/min_pwrlevel"
adb shell "echo performance >/sys/class/kgsl/kgsl-3d0/devfreq/governor"
adb shell "cd /sys/class/devfreq/qcom,cpubw.* && echo performance >
governor"
adb shell "echo performance >/sys/class/devfreq/qcom,cpubw.29/governor"
adb shell "echo 1 > /sys/devices/system/cpu/cpu0/online"
adb shell "echo 1 > /sys/devices/system/cpu/cpu1/online"
adb shell "echo 1 > /sys/devices/system/cpu/cpu2/online"
adb shell "echo 1 > /sys/devices/system/cpu/cpu3/online"
adb shell "echo 1 > /sys/devices/system/cpu/cpu4/online"
adb shell "echo 1 > /sys/devices/system/cpu/cpu5/online"
adb shell "echo 1 > /sys/devices/system/cpu/cpu6/online"
adb shell "echo 1 > /sys/devices/system/cpu/cpu7/online"
adb shell stop thermald
adb shell stop mpdecision
adb shell "echo performance >
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor"
adb shell "echo performance >
/sys/devices/system/cpu/cpu1/cpufreq/scaling_governor"
adb shell "echo performance >
/sys/devices/system/cpu/cpu2/cpufreq/scaling_governor"
adb shell "echo performance >
/sys/devices/system/cpu/cpu3/cpufreq/scaling_governor"

Qualcomm® Snapdragon™ Mobile Platform OpenCL General Programming and Optimization How to enable
performance mode

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 71

adb shell "echo performance >
/sys/devices/system/cpu/cpu4/cpufreq/scaling_governor"
adb shell "echo performance >
/sys/devices/system/cpu/cpu5/cpufreq/scaling_governor"
adb shell "echo performance >
/sys/devices/system/cpu/cpu6/cpufreq/scaling_governor"
adb shell "echo performance >
/sys/devices/system/cpu/cpu7/cpufreq/scaling_governor"
adb shell "cat /sys/class/kgsl/kgsl-3d0/gpuclk"
adb shell "echo 1 > /sys/class/kgsl/kgsl-3d0/force_clk_on"
adb shell "echo 1000000 > /sys/class/kgsl/kgsl-3d0/idle_timer"

For GPU only:

adb shell echo 0 > /sys/class/kgsl/kgsl-3d0/min_pwrlevel
adb shell echo 0 > /sys/class/kgsl/kgsl-3d0/max_pwrlevel

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 72

B References

B.1 Related documents

Title Number

Qualcomm Technologies, Inc.
Introduction to Adreno Profiler for OpenCL 80-ND791-5
CL-GL Interop Usage Guidelines 80-NK985-1

Standards
The OpenCL Specification The Khronos Group Inc.

Versions 1.1, 1.2, and 2.0
http://www.khronos.org/opencl/

Resources
OpenCL Programming Guide, Addison-Wesley Publishing Company
Chapter 7, “Display Lists”
Chapter 8, “Drawing Pixels, Bitmaps, Fonts, and Images”

http://ube.ege.edu.tr/~ozturk/grap
hics/opengl_book/ch7.htm
and
http://ube.ege.edu.tr/~ozturk/grap
hics/opengl_book/ch8.htm

B.2 Acronyms and terms

Acronym or term Definition

ALU arithmetic logic unit
ANB Android native buffer
EFU elementary function unit
GPR general purpose register
IOT internet of things
NDK native development kit
OS operating system-on-chip
RAM random-access memory
SDK software development kit
SOC system-on-chip
SP streaming or shader processor
SVM shared virtual memory
TP texture processor
UCHE unified L2 cache
UI user interface

http://www.khronos.org/opencl/
http://ube.ege.edu.tr/%7Eozturk/graphics/opengl_book/ch7.htm
http://ube.ege.edu.tr/%7Eozturk/graphics/opengl_book/ch7.htm
http://ube.ege.edu.tr/%7Eozturk/graphics/opengl_book/ch8.htm
http://ube.ege.edu.tr/%7Eozturk/graphics/opengl_book/ch8.htm

	Qualcomm® Snapdragon™ Mobile Platform OpenCL General Programming and Optimization
	Revision history
	Contents
	Figures
	Tables
	1 Introduction
	1.1 Purpose
	1.2 Conventions
	1.3 Technical assistance

	2 Introduction to OpenCL
	2.1 OpenCL background and overview
	2.2 OpenCL on mobile
	2.3 OpenCL standard
	2.3.1 OpenCL API functions
	2.3.2 OpenCL C language
	2.3.3 OpenCL versions and profiles

	2.4 OpenCL portability and backward compatibility
	2.4.1 Program portability
	2.4.2 Performance portability
	2.4.3 Backward compatibility

	3 OpenCL on Snapdragon
	3.1 OpenCL on Snapdragon
	3.2 Adreno GPU architecture
	3.2.1 Adreno high-level architecture for OpenCL
	3.2.2 Waves and fibers
	3.2.3 Latency hiding
	3.2.4 Workgroup assignment

	3.3 Adreno A3x, A4x, and A5x differences on OpenCL
	3.3.1 L2 cache
	3.3.2 Local memory

	3.4 Context switching between graphics and compute workload
	3.4.1 Context switch
	3.4.2 Limit kernel/workgroup execution time on GPU

	3.5 OpenCL standard related improvement
	3.6 OpenCL extensions

	4 Adreno OpenCL application development
	4.1 OpenCL application development on Android
	4.2 Debugging tools
	4.3 Snapdragon Profiler
	4.4 Performance profiling
	4.4.1 CPU timer
	4.4.2 GPU timer
	4.4.3 GPU timer vs. CPU timer
	4.4.4 Performance mode
	4.4.5 GPU frequency controls

	5 Overview of performance optimizations
	5.1 Performance portability
	5.2 High-level view of optimization
	5.3 Initial evaluation for OpenCL porting
	5.4 Port CPU code to OpenCL GPU
	5.5 Parallelize GPU and CPU workloads
	5.6 Bottleneck analysis
	5.6.1 Identify bottlenecks
	5.6.2 Resolve bottlenecks

	5.7 API level performance optimization
	5.7.1 Proper arrangement of API function calls
	5.7.2 Use event-driven pipeline
	5.7.3 Kernel loading and building
	5.7.4 Use in-order command queues

	6 Workgroup size performance optimization
	6.1 Obtain the maximum workgroup size
	6.2 Required and preferred workgroup size
	6.3 Factors affecting the maximum workgroup size
	6.4 Kernels without barrier
	6.5 Workgroup size tuning
	6.5.1 Avoid using default workgroup size
	6.5.2 Large workgroup size, better performance?
	6.5.3 Fixed vs. dynamic workgroup size
	6.5.4 One vs. two vs. three-dimensional (1D/2D/3D) workgroup

	6.6 Other topics on workgroup size
	6.6.1 Global work size and padding
	6.6.2 Brute force search
	6.6.3 Avoid uneven workload across workgroups
	6.6.4 Workgroup synchronization

	7 Memory performance optimization
	7.1 OpenCL memories in Adreno GPUs
	7.1.1 Local memory
	7.1.2 Constant memory
	7.1.3 Private memory
	7.1.4 Global memory
	7.1.4.1 Buffer
	7.1.4.2 Image
	7.1.4.3 Using image object vs. buffer object
	7.1.4.4 Use of both Image and buffer objects
	7.1.4.5 Global memory vs. local memory

	7.2 Optimal memory load/store
	7.2.1 Coalesced memory load/store
	7.2.2 Vectorized load/store
	7.2.3 Optimal data type
	7.2.4 16-bit floating (half) vs. 32-bit floating

	7.3 Atomic functions
	7.4 Zero copy
	7.4.1 Use map over copy
	7.4.2 Avoid memory copy for objects allocated not by OpenCL
	7.4.2.1 ION memory extensions
	7.4.2.2 QTI Android native buffer (ANB) extension
	7.4.2.3 Using standard EGL extensions

	7.5 Improve cache usage
	7.6 CPU cache operations
	7.7 Use of SVM
	7.8 Best practices to reduce power/energy consumption

	8 Kernel performance optimization
	8.1 Kernel fusion or splitting
	8.2 Compiler options
	8.3 Conformant vs. fast vs. vs. native math functions
	8.4 Loop unrolling
	8.5 Avoid branch divergence
	8.6 Handle image boundaries
	8.7 32-bit vs. 64-bit GPU memory access
	8.8 Avoid use of size_t
	8.9 Generic memory address space
	8.10 Miscellaneous

	9 OpenCL optimization case studies
	9.1 Application sample code
	9.1.1 Improve algorithm
	9.1.2 Vectorized load/store
	9.1.3 Use image instead of buffer

	9.2 Epsilon filter
	9.2.1 Initial implementation
	9.2.2 Data pack optimization
	9.2.3 Vectorized load/store optimization
	9.2.4 Further increase work load per work item
	9.2.5 Use local memory optimization
	9.2.6 Branch operations optimization
	9.2.7 Summary

	9.3 Sobel filter
	9.3.1 Algorithm optimization
	9.3.2 Data pack optimization
	9.3.3 Vectorized load/store optimization
	9.3.4 Performance and summary

	9.4 Summary

	10 Summary
	A How to enable performance mode
	A.1 Adreno A3x GPU
	A.1.1 CPU settings
	A.1.2 GPU settings:

	A.2 Adreno A4x GPU and Adreno A5x GPU

	B References
	B.1 Related documents
	B.2 Acronyms and terms

