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1  Introduction 

1.1  Purpose 
This document provides guidelines for OEMs, ISVs, and third-party developers for developing 
and optimizing OpenCL applications on the Qualcomm® Snapdragon™ 400-, 600-, and 
800-based mobile platforms and chipsets. 

1.2  Conventions 
Function declarations, function names, type declarations, attributes, and code samples appear in a 
different font, for example, #include. 

Code variables appear in angle brackets, for example, <number>. 

Commands to be entered appear in a different font, for example, copy a:*.* b:. 

Button and key names appear in bold font, for example, click Save or press Enter. 

1.3  Technical assistance 
For assistance or clarification on information in this document, submit a case to Qualcomm 
Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/. 

If you do not have access to the CDMATech Support website, register for access or send email to 
support.cdmatech@qti.qualcomm.com. 

 

 

https://createpoint.qti.qualcomm.com/
mailto:support.cdmatech@qti.qualcomm.com
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2  Introduction to OpenCL 

This chapter discusses key concepts of the OpenCL standard and seeks to convey fundamental 
knowledge of OpenCL for application development on mobile platforms. To understand the 
OpenCL standard in more detail, refer to The OpenCL Specification in References. Developers 
with prior OpenCL knowledge and experience may skip this chapter and move to the next ones.  

2.1  OpenCL background and overview 
Developed and maintained by the Khronos group, OpenCL is an open and royalty free standard 
for cross platform parallel programming in heterogeneous systems. It is designed in a way that 
helps developers to exploit the massive computing power available in modern heterogeneous 
system and greatly facilitate application development across platforms.  

Qualcomm® AdrenoTM GPU series on Snapdragon platforms have been one of the earliest mobile 
GPUs that fully support OpenCL. 

OpenCL application

OpenCL 
kernel

OpenCL 
kernel

OpenCL 
kernel

GPU FPGADSP Hardware 
accelerator

CPU host

OpenCL 
kernel

OpenCL 
devices

OpenCL 
kernels

 
Figure 2-1   Heterogeneous system using OpenCL 

Figure 2-1 shows a typical heterogeneous system that supports OpenCL. In this system, there are 
mainly three parts:  

 A host CPU that is essentially a commander/master that manages and controls the 
application.  

 Multiple OpenCL devices, including GPU, DSP, FPGA, and a hardware accelerator. 

 Kernel codes which are compiled and loaded by the host to OpenCL devices to execute.  
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2.2  OpenCL on mobile 
In recent years, the mobile system-on-chips (SOCs) have advanced significantly in computing 
power, complexity, and functionality. GPUs in the mobile SOCs (mobile GPUs) are very 
powerful and some of the top mobile GPUs reach the level of console/discrete GPUs in terms of 
raw computing power.  

This poses challenges for developers: how to effectively make use of the computing power and 
quickly develop applications without knowing the low-level details of the GPUs, while 
maintaining application compatibility across different SOCs? 

Created to tackle these problems, OpenCL allows developers to easily leverage computing power 
of mobile SOCs thanks to its cross-platform support. By using OpenCL, mobile SOCs can easily 
enable advanced use cases in many fields, such as image/video processing, computer vision, 
machine learning, etc.  

In QTI, many use cases have been successfully accelerated using OpenCL with Adreno GPUs, 
which demonstrated excellent performance, power, and portability. It is highly recommended to 
use OpenCL with GPUs to accelerate their applications for Snapdragon SOCs.  

2.3  OpenCL standard 
The OpenCL standard primarily contains two components, the OpenCL runtime API and the 
OpenCL C language. The API defines a set of functions running on host for resource 
management, kernel dispatch and many other tasks, while the OpenCL C language is used to 
write kernels that execute on OpenCL devices. The OpenCL API and OpenCL C language will be 
reviewed in the following sections.  

2.3.1  OpenCL API functions  
The OpenCL API functions can be classified into two categories, platform layer and runtime. 
Table 2-1 and Table 2-2 summarize the high-level functionality of the platform layer and the 
runtime layer respectively.  

Table 2-1  OpenCL platform layer functionality 

Functionality Details 

Discover the platform Is there an OpenCL platform available? 

Discover OpenCL devices Is OpenCL available on GPU, CPU, or other devices 

Query the OpenCL device information Global memory size, local memory size, maximum workgroup size, 
etc.  
Also check the extensions supported by the device. 

Context  Context management, such as context creation, retain, and 
releases 
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Table 2-2  OpenCL run time layer functionality  

Functionality Details 

Command queue management Used to communicate between device and host and can have 
many queues in an application 

Create and build OpenCL programs and 
kernels 

Is the kernel loaded and built successfully 

Prepare data for kernel to execute, 
create memory objects and initialize 
them 

What memory flag to use? Is there a way to do zero copy 
memory object creation? 

Create a kernel call and submit it to the 
compute device 

What workgroup size to use?  
 

Synchronization Memory consistency 
Resource management Deliver results and release resources 

Understanding of the two layers are essential for writing OpenCL applications. Refer to 
References for more details. 

2.3.2  OpenCL C language 
As a subset of the C99 standard, the OpenCL C language is used to write kernels that can be 
compiled and executed on devices. Developers with C language programming experience can 
easily get started with OpenCL C programming. However, it is crucial to understand the 
differences between the C99 standard and the OpenCL C language to avoid common mistakes. 
Here are the two key differences: 

 Some features in C99 are not supported by the OpenCL C language due to hardware limits 
and the OpenCL execution model. Examples are function pointers and dynamic memory 
allocation (malloc/calloc, etc.).  

  The OpenCL C language extends the C99 standard in several aspects so that it can better 
serve its programming model and facilitate development, for example: 

 It adds built-in functions to query the OpenCL kernel execution parameters.  

 It has image load/store functions that can leverage the GPU hardware.  

2.3.3  OpenCL versions and profiles 
The current OpenCL v2.2 with the provisional SPIR-V 1.2 standard contains many improved 
features. Refer to References for more details. 

OpenCL defines two profiles, embedded profile and full profile. Embedded profile mainly targets 
mobile devices, which typically have lower precision capability, and fewer hardware features 
than traditional computing devices such as desktop GPUs. For a list of the key differences 
between embedded and full profile, refer to References. 
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2.4  OpenCL portability and backward compatibility 

2.4.1  Program portability 
As a strictly defined computing standard, OpenCL has good program portability. OpenCL 
applications written for one vendor’s platform should run well on other vendors’ platforms, if 
they are not using any vendor-proprietary or platform-specific extensions or features. 

The program portability of OpenCL is ensured by Khronos’ certification program, which requires 
OpenCL vendors to pass rigorous conformance tests on their platform before they claim it is 
OpenCL “conformant.” 

2.4.2  Performance portability 
Unlike program portability, OpenCL performance is generally not portable. As a high-level 
computing standard, the hardware implementation of OpenCL is vendor dependent. Different 
hardware vendors have different device architectures and each one may have its advantages and 
disadvantages. As a result, an OpenCL application written and optimized for one vendor’s 
platform is unlikely to have the same performance as on other vendors’ platforms. 

Even for the same vendors, different generations of their GPU hardware may vary in micro-
architectures and features, which could lead to noticeable performance differences for OpenCL 
programs. As a result, applications optimized for older generations of hardware often require 
fine-tuning to exploit the full capacity of newer generations.  

2.4.3  Backward compatibility  
OpenCL fully embraces backward compatibility to ensure the investment on old code can run on 
new versions of OpenCL with no problems. Note that as some API functions may be deprecated 
in newer versions, the macros CL_USE_DEPRECATED_OPENCL_1_1_APIS or 
CL_USE_DEPRECATED_OPENCL_1_2_APIS need to be defined if the OpenCL 1.1 or 1.2 
deprecated APIs are used with the OpenCL 2.x header file.  

OpenCL extensions are not guaranteed to be carried forward to new devices, so applications 
using extensions need to examine if the new devices support them. 
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3  OpenCL on Snapdragon 

Snapdragon is one of the most powerful and widely used mobile platforms in today’s Android 
operating system and the Internet of Things (IOT) market. The Snapdragon mobile platform 
brings together best-in-class mobile components on a single chip, ensuring that Snapdragon-based 
devices deliver the latest mobile user experiences in an extremely power-efficient, integrated 
solution. 

Snapdragon is a multiprocessor system that includes components such as a multimode modem, 
CPU, GPU, DSP, location/GPS, multimedia, power management, RF, optimizations to software 
and operating systems, memory, connectivity (Wi-Fi, Bluetooth), etc. 

For a list of current commercial devices that include Snapdragon processors and to learn more 
about Snapdragon processors, go to http://www.qualcomm.com/snapdragon/devices. Generally 
used for rendering graphics applications, Adreno GPUs in Snapdragon processors are also 
powerful general-purpose processors capable of handling many computationally intensive tasks, 
such as image and video processing, and computer vision. The capabilities of the GPU can be 
leveraged using OpenCL to perform data-parallel computations. 

3.1  OpenCL on Snapdragon 
OpenCL is fully supported on the Adreno A3x, A4x, and A5x GPUs, and is fully conformant 
with the OpenCL standard. OpenCL has different versions and profiles, and different Adreno 
GPUs may support different OpenCL versions, as shown in Table 3-1.  

Table 3-1  Adreno GPUs with OpenCL support  

GPU series Adreno A3x Adreno A4x Adreno A5x 

OpenCL version 1.1  1.2 2.0 
OpenCL profile Embedded Full Full 

Besides the difference in OpenCL versions and profiles, there are other properties that may vary 
across Adreno GPUs, such as the supported extensions and maximum dimensions of image 
objects, etc. A full list of the details can be obtained by calling the OpenCL API function 
clGetDeviceInfo.  

http://www.qualcomm.com/snapdragon/devices
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3.2  Adreno GPU architecture 
This section provides a high-level overview of the Adreno architecture relevant to OpenCL.  

3.2.1  Adreno high-level architecture for OpenCL 

  
Figure 3-1  High-level architecture of the Adreno A5x GPUs for OpenCL 

Adreno GPUs support many graphics and compute APIs, including the OpenGL ES, OpenCL, 
DirectX, and Vulkan, etc. Figure 3-1 illustrates a high-level view of the Adreno A5x hardware 
architecture for OpenCL, where the graphics related hardware modules are skipped. There are 
many differences between A5x and other Adreno GPUs, while for OpenCL the differences are 
relatively minor.  

The key hardware modules for OpenCL execution are as follows:  

 Shader (or streaming) processor (SP) 

 Core block of Adreno GPUs. Contains many hardware modules, including arithmetic 
logic unit (ALU), load/store unit, control flow unit, register files, etc.  

 It executes graphics shaders (e.g., vertex shader, fragment shader, and compute shader) 
and compute workload such as OpenCL kernels. 

 Each SP corresponds to one or more OpenCL Compute Units.  

 Adreno GPUs may contain one or more SPs, dependent on GPU series and tiers. A low-
tier chipset may have a single SP, while a high or premium tier chipset may have more 
SPs. In Figure 3-1, there is only one SP. 

 SPs load and store data through L2 cache for buffer objects and image objects defined 
with the __read_write qualifier (OpenCL 2.0 feature). 

 SPs load data from texture processor/L1 module for read-only image objects. 

 Texture processor (TP)  

 Performs texture operations, such as texture fetch and filtering based on kernel’s request.  

 TP is coupled with L1 cache, which fetches data from UCHE in case of texture data 
cache miss.  

 Unified L2 Cache (UCHE) 

Shader 
Processor L2 Cache System 

Memory

Texture 
Processor/
L1 Cache

Image Read

Buffer Read/Write

Image Write
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 Responds to SP’s load/store requests for buffer objects and L1 cache’s data load requests 
for image objects.  

3.2.2  Waves and fibers 
In Adreno GPUs, the smallest unit of execution is called a fiber. One fiber corresponds to one 
work item in OpenCL. A collection of fibers which always execute in lock-step is called a wave. 
The SP can accommodate multiple active waves at a time. Each wave can generally make 
independent forward progress, irrespective of the status of the other waves. Note that: 

 Wave size, or the number of fibers in a wave, is generally fixed for a given GPU and kernel.  

 Wave size in Adreno GPUs depends on the GPU series and tiers as well as the compiler; 
values could be 8, 16, 32, 64, 128, etc. 

 A workgroup may be executed by one or multiple waves, dependent on the workgroup size. 
For example, one wave is sufficient if the workgroup size is less than or equal to the wave 
size. Typically more waves are better as they allow better latency hiding. 

 SP can execute ALU instructions on one or more waves simultaneously.  

 The maximum number of waves that can be pipelined in the workgroup is hardware 
dependent. Typically, Adreno GPUs support up to 16 waves.  

 Given a kernel, the maximum number of active waves in one SP depends on the kernel’s 
register footprint and register file size, which again depends on GPU series and tiers.  

 Generally, the more complex the kernel is, the fewer active waves.  

 Given a kernel, the maximum workgroup size is the product of the maximum allowed number 
of waves and the wave size. 

OpenCL 1.x does not expose the concept of waves, while OpenCL 2.0 allows applications to use 
it through the cl_khr_subgroups extension, which is supported from the Adreno A5x GPUs. 

3.2.3  Latency hiding  
Latency hiding is one of the most powerful characteristics of GPU for efficient parallel 
processing, and enables GPU to achieve high throughput. Here is an example:  

 SP starts to execute the 1st wave.  

 After a few ALU instructions, this wave requires additional data from external memory 
(could be global/local/private memory) to proceed, which is not available.  

 SP sends data fetch requests for this wave. 

 SP switches execution to the 2nd wave which is ready to execute.  

 SP continues to execute the 2nd wave to a point where external dependency is not ready.  

 SP may switch to the 3rd wave, or switch back to the 1st wave, if the data for the 1st wave is 
available.  

In this way, SP is mostly busy and working like “full time” as the latency, or the dependency, can 
be well hidden.  
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3.2.4  Workgroup assignment 
A typical OpenCL kernel launches multiple workgroups. In Adreno GPUs, each workgroup is 
assigned to an SP, and each SP typically processes one workgroup at a time. The remaining 
workgroups, if there is any, are queued in GPU for execution.  

Take the 2DRange in Figure 3-2 as an example, and assume this is a GPU with 4 SPs. Figure 3-3 
shows how the workgroups are allocated to different SPs. In this example, there are 9 workgroups 
in total and each of them is executed by one SP. And there are four waves per workgroup, and the 
wave size is 16.  

WG [2,0]WG [0,0] WG [1,0]

WG[0,1]

SP0

SP0
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SP1
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SP2

SP2

SP3
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Figure 3-2  An example of workgroup layout and dispatch in Adreno GPUs 
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Figure 3-3  An example of workgroup allocation to SPs 

The OpenCL standard neither defines the order of workgroup launching/execution, nor the 
method for workgroup synchronization. For Adreno GPUs, developers cannot assume that 
workgroups are launched in certain orders on the SPs. It is also true for waves.  

In most Adreno GPUs, one SP can only process one workgroup at a time, and the workgroup 
must be completed before another one can be started. While in high tier or newer series, such as 
the Adreno A540 GPU, multi-workgroup execution per SP is supported. 

3.3  Adreno A3x, A4x, and A5x differences on OpenCL 
Each new series of Adreno GPUs brings numerous improvements to OpenCL features and 
performance. This section discusses key changes that affect OpenCL performance.  

3.3.1  L2 cache  
The L2 cache architecture has been improved significantly for better efficiency and performance 
from the Adreno A320 and A330 GPUs to the Adreno A420, A430, A530 and A540 GPUs, in 
addition to size increases.  

3.3.2  Local memory 
Local memory has been improved from the Adreno A3x to A4x and A5x series, including the 
size capacity, load/store throughput, and coalesced access. Table 3-2 shows the difference of 
coalesced access on different series. 

Table 3-2  Local memory performance summary 

GPUs Adreno A3x Adreno A4x Adreno A5x 

Coalesced No No Yes, load/store up to 128 bits by up to 4 work 
items per operation 

Coalesced access is an important concept for OpenCL and GPU parallel computing. Basically, it 
refers to the case where the underlying hardware can combine and merge the data load/store 
requests by multiple work items into one request, so that the data load/store efficiency is 
improved. Without coalesced access support, the hardware must perform the load/store operation 
per each individual request, resulting in inferior performance.  
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Figure 3-4 illustrates the difference between coalesced data load vs. non-coalesced. To combine 
the requests from multiple work items, the addresses of the data generally need to be consecutive. 
In the coalesced case, Adreno GPUs can load data for four work items in one transaction, while 
without coalesced it would take four transactions for the same amount of data.  

Workitem 0 Workitem 1 Workitem 2 Workitem 3 Workitem 4 Workitem 5 Workitem 6 Workitem 7

1st load 2nd loadWith coalescing

Without coalescing

1st  load 2nd load 3rd load 4th load 5th load 6th load 7th load 8th load

 
Figure 3-4  Illustration of coalesced vs. non-coalesced data load 

 

3.4  Context switching between graphics and compute 
workload 

3.4.1  Context switch 
In Adreno GPUs, if a high priority task, such as graphics user interface (UI) rendering, is required 
while a low priority workload is running on GPU, the latter one could be forced to pause so that 
GPU switches to the high priority workload. When the high priority task is completed, the lower 
one is resumed. This type of workload switch is called context switch. Context switch is generally 
expensive, as it requires complex hardware and software operations. However, it is an important 
feature to enable the emerging and advanced timing critical tasks such as automobile applications.  

3.4.2  Limit kernel/workgroup execution time on GPU 
Sometimes a compute kernel may be running for an excessive period and trigger an alert that 
causes the GPU to be reset. To avoid unexpected behaviors, it is discouraged to have compute 
kernels with workgroups that take too long to complete. Usually the UI rendering on Android 
devices occurs constantly, e.g., every 30 milliseconds, and a long-running compute kernel could 
cause UI to be lagging and unresponsive, and therefore hurt user experience. The ideal execution 
time would be case dependent. However, a general rule of thumb is that the kernel execution time 
should be in the range of tens of milliseconds.  

3.5  OpenCL standard related improvement 
The Adreno A3x GPUs support OpenCL 1.1 embedded profile, while the Adreno A4x GPUs 
support OpenCL 1.2 full profile, and the Adreno A5x GPUs support OpenCL 2.0 full profile. 
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From the OpenCL 1.1 embedded profile to the OpenCL 1.2 full profile, the majority changes are 
on software rather than hardware, such as improved API functions.  

From the OpenCL 1.2 full profile to the OpenCL 2.0 full profile, however, there are many new 
hardware features introduced, such as the shared virtual memory (SVM), kernel-enqueue-kernel, 
etc. Table 3-3 lists the major differences on OpenCL profile support across the three Adreno 
GPUs.  

Table 3-3  Standard OpenCL features supported in Adreno GPUs 

Features 
OpenCL 1.1 
Embedded 
Adreno A3x 

OpenCL 1.2 Full 
Adreno A4x 

OpenCL 2.0 Full 
Adreno A5x 

Separate compilation and 
linking of objects 

No Yes Yes 

Rounding mode Rounding to zero Rounding to 
nearest even 

Rounding to nearest even 

Built in kernels No Yes Yes 
1D texture, 1D/2D image array No Yes Yes 
Shared virtual memory No No Yes (coarse grain only) 
Pipe No No Yes 
Load-store image No No Yes 
Nested parallelism No No Yes 
Kernel-enqueue-kernel (KEK) No No Yes 
Generic memory space No No Yes 
C++ atomics No No Yes 

3.6  OpenCL extensions 
In addition to supporting the core OpenCL functionality, the Adreno OpenCL platform supports 
many additional features through extensions, which improve the OpenCL usability and expose 
advanced hardware capabilities in Adreno GPUs. The extensions available on a given Adreno 
GPU may be queried using clGetPlatformInfo. Documentation for these extensions is 
available on the QTI Developer Network website (https://developer.qualcomm.com). 
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4  Adreno OpenCL application development 

This chapter briefly discusses some basic requirements for Adreno OpenCL application 
development, followed by how to debug and profile applications.  

4.1  OpenCL application development on Android 
Currently, Adreno GPUs support OpenCL mainly on the Android operating system (OS) and on 
select Linux systems. To develop an Android app that runs with OpenCL, developers need to get 
familiar with the Android software development kit (SDK) and the native development kit 
(NDK). Refer to https://developer.android.com/index.html and 
https://developer.android.com/ndk/index.html for Android SDK and NDK respectively. 

Throughout this chapter and the following chapters, it is assumed that the development is on 
Android platform and the developers have experience on Android SDK and NDK. The app 
development on Linux should be similar.  

There are several prerequisites for OpenCL development on Snapdragon platform: 

 Snapdragon devices with OpenCL support. Not all Snapdragon devices support OpenCL. 
Refer to Table 3-1 for more details. 

 OpenCL software. OpenCL on Adreno GPUs relies on QTI proprietary libraries.  

 Check if the device has the OpenCL libraries installed.  

– The core library is libOpenCL.so, which is usually located at /vendor/lib on device.  

 Some vendors may choose not to include the OpenCL software (for example, Google’s 
Nexus and Pixel devices).  

 OpenCL must run at the NDK layer.  

 Root access privilege is not necessary for development and testing, but it may be required for 
running the SOCs in Performance mode. 

Table 4-1 summarizes the key requirements for OpenCL development with Adreno GPUs.  

Table 4-1  Requirements of OpenCL development with Adreno GPUs 

Items Requirements Note 

Devices Adreno A3x/A4x/A5x GPUs  
Operating system Android, Linux Only select Linux platforms support OpenCL. 
Device software requirement libOpenCL.so on device Some devices may not have it 
Development requirement Adreno NDK/SDK OpenCL code needs to run at NDK layer  

Root privilege on device Not required generally Required for performance mode 

https://developer.android.com/index.html
https://developer.android.com/ndk/index.html
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4.2  Debugging tools 
Debugging OpenCL kernel is often challenging due to the parallel nature of GPU execution. The 
Adreno GPUs support the printf function inside kernels, which is very useful for debug. To use 
printf, it is recommended to reduce the workload, print variables with conditions, and avoid 
printing out too many variables, as printf slows down code execution. For example, one may 
only enable the problematic workgroup, or even the single problematic work item (by setting 
proper offsets in the function CLEnqueueNDRangeKernel)  

It is important to know the software version of the device as some bugs or issues may have been 
fixed in the newer releases. To query the software (driver) and compiler version, an API function 
called clGetDeviceInfo can be used. For more details, refer to References.  

4.3  Snapdragon Profiler 
The Snapdragon Profiler is a profiling tool provided by QTI that runs on Windows, Mac, and 
Linux platforms and allows developers to analyze CPU, GPU, DSP, memory, power, thermal, 
network data of Snapdragon processors running Android. It supports OpenCL and many graphics 
APIs, such as OpenGL ES and Vulkan. For more details, refer to 
https://developer.qualcomm.com/software/snapdragon-profiler.  

The following are some key features offered by the Snapdragon Profiler for OpenCL profiling. 

 The profiler has a kernel analyzer which allows developers to do static analysis for a given 
kernel. It provides information such as register footprint, total instructions, and the number 
instructions for each type of operations, etc., to help developers better optimize kernels.  

 The profiler provides OpenCL API traces and logs for a given OpenCL application. It allows 
developers to identify and resolve bottlenecks from the API level, as well as debug the 
application.  

 The profiler provides information such as GPU busy ratio, ALU utilization ratio, L1/L2 cache 
hit ratio, etc., which is essential for developers to identify performance issues in kernels.  

 The profiler supports command line based applications, as well as Android GUI apps. 

4.4  Performance profiling  
Given an app, it is critical to profile its performance accurately. Two commonly used methods, 
CPU timer and GPU timer, and their key differences are discussed in the following sections. 

4.4.1  CPU timer 
CPU timer is used for measuring the full execution time of OpenCL calls from the host side. This 
can be achieved by using any of the date and time functions that are part of the standard library of 
the C/C++ programming language. An example is to use gettimeofday as follows:  

#include <time.h> 
#include <sys/time.h> 
void main() { 
struct timeval start, end; 
gettimeofday(&start, NULL); /*get the start time*/ 
/*Execute function of interest*/ {  . . . 

https://developer.qualcomm.com/software/snapdragon-profiler
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  clFinish(commandQ); 
 } 
gettimeofday(&end, NULL); /*get the end time*/ 
/*Print the total execution time*/ 
printf("%ld\n", ((end.tv_sec * 1000000 + end.tv_usec) 
 - (start.tv_sec * 1000000 + start.tv_usec)));  
}  

The OpenCL runtime enqueue API functions can be categorized to blocking calls and 
nonblocking calls. And for nonblocking calls CPU timer must be used with care: 

 Nonblocking call means that the host proceeds to the next instruction after its submission 
(which usually is queued for execution in another CPU thread), rather than wait for the 
function call to complete. 

 The kernel execution API function, clEnqueueNDRangeKernel, is a nonblocking 
function.  

 For nonblocking calls, the real execution time is not the time difference between the function 
call.  

When using a CPU timer to measure the kernel execution time from host side, one must make 
sure the function is complete by using either the clWaitforEvent call (if there is an event ID 
for the nonblocking call), or clFinish. The same rule applies to the memory transfer calls.  

4.4.2  GPU timer 
All OpenCL enqueue function calls optionally return an event object to the host, which can be 
used by the OpenCL profiling APIs to query the execution time. Adreno GPUs have their own 
clock and timer to measure the function execution flow, and the GPU execution time is 
determined by GPU hardware counters that are independent of the operating system. 

To enable the GPU timer functionality, the CL_QUEUE_PROFILING_ENABLE flag needs to be set 
in the property argument of either clCreateCommandQueue or clSetCommandQueueProperty 
for the current command queue. Also, an event object must be provided to the enqueue function. 
Once the function is completed, the API function clGetEventProfilingInfo shall be used to 
obtain the profiling information of the command execution.  

For a clEnqueueNDRangeKernel call, using the clGetEventProfilingInfo function with the 
four profiling parameters, including CL_PROFILING_COMMAND_(QUEUED, SUBMIT, START, 
and END), can provide an accurate picture of the kernel launch latency and kernel execution time 
in Adreno GPUs, as shown in Figure 4-1.  

 The difference between the first two parameters, CL_PROFILING_COMMAND_(QUEUED and 
SUBMIT), gives an idea of the software overhead, and the overhead of CPU cache operations. 
The OpenCL software may choose to queue the kernel first, and submit it along with several 
following kernels in the queue later, for example, when the number of kernels in the queue is 
large enough. Developers may use the clFlush function to speed up the submission.  

 The difference between CL_PROFILING_COMMAND_(SUBMIT and START) can give an idea 
of many other jobs GPU is processing.  

 The actual kernel execution time on GPU is the difference between 
CL_PROFILING_COMMAND_(START and END). 
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Developers should focus on minimizing the actual kernel execution time. This can be improved 
relatively easier as compared to the other two timers that are typically hard to control. 

QUEUED SUBMIT START END

Command execution on GPUGPU is busy processing other tasks Software overhead, 
e.g., cache flush

Kernel optimization should be 
focusing on

 
Figure 4-1  Profiling flags for the clEnqueueNDRange call in Adreno GPUs  

4.4.3  GPU timer vs. CPU timer 
As both GPU and CPU timer can be used to profile the performance, which one should be used 
for an application? Though GPU timer can accurately measure the GPU execution time, some 
hardware operations (e.g., cache flush) and some software operations (e.g., synchronization 
between CPU host and GPU) are out of the GPU clock system. As a result, the GPU timer is 
likely to report a better performance number than CPU timer for kernel execution. Here are the 
two practices recommended: 

 GPU timer should be used to measure the kennel optimization. GPU timer can tell exactly 
how much improvement is achieved by the optimization steps from a GPU execution 
perspective. 

 CPU timer should be used to measure end-to-end performance for the whole application. This 
is important if the OpenCL program is only part of a whole application pipeline.  

4.4.4  Performance mode 
Snapdragon SOCs have advanced dynamical clock and voltage control mechanism which 
automatically controls the system so that it runs at power saving mode to save battery under 
certain scenarios. Typically, if there is intensive workload, the system may automatically raise 
clock rate and voltage, pushing the device into so-called performance mode to boost the 
performance and meet the workload demand.  

For OpenCL optimization, it would be difficult to understand and profile the performance if the 
system dynamically changes clock rate. Therefore, it is recommended to enable performance 
mode for the sake of profiling consistence and accuracy.  

In the absence of performance mode settings, the first OpenCL kernel in a sequence typically 
shows greater launch latency and slower execution time. One may need to use some simple 
kernels to warm up the GPU before launching the real GPU workload.  

The performance of an OpenCL kernel is not solely dependent on GPU. The API functions 
running at CPU are as critical as the kernel execution on GPU. To achieve the best performance, 
both CPU and GPU should have performance mode enabled. In addition, to reduce the 
interference from UI rendering, it is recommended that:  

 Ensure that the application being profiled renders full screen so that no other activity is 
updating the screen. 
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 If it is a native application, be sure that SurfaceFlinger is not running on Android. This 
ensures that the CPU and GPU are being solely used by the application being profiled. 

The sequence of commands needed to enable performance mode are slightly different for the 
Adreno A3x, A4x and A5x GPUs. Refer to Section A for more details. 

4.4.5  GPU frequency controls 
The application can leverage the cl_qcom_perf_hint extension to control GPU frequency. This 
extension allows the application to set a performance hint property when creating the OpenCL 
context. The performance level can be HIGH, NORMAL and LOW. The NORMAL perf level leaves the 
dynamic clock and voltage control enabled. The HIGH and LOW performance levels disable the 
dynamic control and force the GPU to run at their maximum and minimum frequencies 
respectively.  

NOTE: The performance levels are just a hint. The driver attempts to respect these hints but factors such 
as thermal controls or external applications or services can override these hints. The perf hint 
extension gives the application some flexibility in the power/performance tradeoff. However, it 
should be used carefully as it has major implications for SOC level power consumption. 
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5  Overview of performance optimizations 

This chapter provides a high-level overview of OpenCL application optimization. More detailed 
discussions can be found in the next few chapters.  

NOTE: Optimization of an OpenCL application can be challenging. It often requires considerably more 
efforts than initial development..  

5.1  Performance portability 
As discussed in Section 2.4.2, OpenCL generally does not have good performance portability 
across different architectures. OpenCL applications that have been optimized on other platforms, 
especially on discrete GPUs, are unlikely to perform well on Adreno GPUs. The programming 
guide and best practices from other OpenCL vendors may not be applicable for Adreno GPUs at 
all. Therefore, it is extremely important to read through this entire document for optimization 
work on Adreno GPUs. Also, an OpenCL application optimized for one Adreno GPU may need 
extra tuning or optimization to achieve optimal performance on other Adreno GPUs. 

5.2  High-level view of optimization  
Optimization of an OpenCL application can be roughly categorized into the following three levels 
from top to bottom:  

 Application/algorithm  

 API functions 

 Kernel optimization 

An OpenCL optimization problem is essentially a problem of how to optimally utilize the 
memory bandwidth and computing power, including 

 The optimal ways to use global memory, local memory, registers and caches, etc.  

 The optimal ways to leverage computing resources such as the ALU and texture operations.  

The application level optimization strategy is addressed in the remaining sections of this chapter. 
Other levels are presented in the following chapters. 
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5.3  Initial evaluation for OpenCL porting 
It is important for developers to assess whether an application is suitable for OpenCL prior to 
porting it blindly. Following are the typical characteristics of a good candidate for OpenCL 
acceleration on GPU:  

 Large input data set 

 The overhead between CPU and GPU may overshadow the performance gain of OpenCL 
for small input data sets.  

 Computationally intensive 

 GPUs have many computing units (ALUs) and its peak computing power, gflops, is 
usually a lot higher than CPU. To fully utilize the GPU, applications should have 
reasonably high computational complexity.  

 Parallel computation friendly 

 The workload may be partitioned into independent small units, and processing of each 
unit does not affect the others. 

 Parallelized task is needed to fully utilize GPU’s capability for memory latency hiding, a 
key benefit of using GPU.  

 Limited divergent control flow  

 GPU is not designed to handle divergent control flow as efficiently as CPU. If the use 
case requires a lot of conditional check and branching operations, CPU may be more 
suitable.  

5.4  Port CPU code to OpenCL GPU 
Typically, developers may already have a CPU based reference program for OpenCL porting. 
Assume the program consists of many small functional modules. While it seems convenient to 
convert each module to an OpenCL kernel on a one-by-one mapping basis, the performance is 
unlikely to be optimal. It is important to consider the following factors: 

 In some cases, merging multiple CPU functional modules into one OpenCL kernel can lead to 
better performance if doing so reduces data traffic between GPU and memory. 

 In some cases, splitting a complex CPU functional module into multiple simpler OpenCL 
kernels can yield better parallelization of individual kernels and better overall performance.  

 Developer may need to modify data structures to tailor the data flow in a way that can reduce 
overall data traffic. 
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5.5  Parallelize GPU and CPU workloads 
To fully utilize the compute power of the SOC, the application may delegate certain tasks to the 
CPU while the GPU is executing a kernel. Here are a few points to consider when designing such 
topology and allocating the workload:  

 Allow the CPU to run the part that is best suitable for the CPU, such as divergent control flow 
and sequential operations.  

 Avoid situations where the GPU is idle and waits for the CPU to complete, or vice versa. 

 Data sharing between the CPU and GPU can be expensive. Instead, try shifting lightweight 
CPU tasks to the GPU, even though it may not be GPU friendly, to eliminate the need for 
data transfer. 

5.6  Bottleneck analysis 
It is crucial to identify and analyze bottlenecks, as this leads to focus areas for optimization. 
Bottlenecks cause stalls and are often the slowest stages in the application. No matter how 
efficient other stages are, performance of the application is limited by its slowest stages, i.e., the 
bottlenecks. It may not make sense to pay any attention to areas until the bottleneck is resolved. 

5.6.1  Identify bottlenecks  
Typically, a kernel is either memory-bound or computation-bound (also known as ALU bound). 
One simple trick is to manipulate the kernel codes and run on device as follows:  

 If adding a lot more computing does not change performance, it may not be compute 
bound.  

 If loading excessive data does not change performance, it may not be memory bound. 

The Snapdragon Profiler, as discussed in Section 4.3 can be used to identify the bottlenecks.  

5.6.2  Resolve bottlenecks  
Once the bottleneck is identified, different strategies can be used to resolve it:  

 If this is an ALU bound problem, find ways to reduce the complexity and the number of 
calculations, such as using fast relaxed math or native math where the precision requirements 
are not high, and using 16-bit floating point format instead of 32-bit floating point format.  

 If this is a memory bound problem, try to improve memory access, such as vectorizing 
load/store, utilizing local memory or texture cache (e.g., use read-only image object in place 
of buffer object). Using shorter data types to load/store data between GPU and global 
memory can be beneficial for saving memory traffic. 

Details are described in following chapters.  

NOTE: The bottleneck could shift as optimization progresses. A memory bound problem could become 
an ALU bound problem if the memory bottleneck is resolved, or vice versa. Many back and forth 
iterations are necessary to obtain the optimal performance.  
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5.7  API level performance optimization 
The OpenCL API functions are executed on the CPU host to manage resources and control 
application execution. Although, in general, API functions are lighter than kernel execution from 
computational complexity perspective, improper use of API functions could lead to big 
performance penalty. Here are a few points that can help developers avoid some common pitfalls.  

5.7.1  Proper arrangement of API function calls  
Expensive API functions should be properly placed so that they do not block or affect the 
launching of workload to GPU. Some OpenCL API functions take a long time to execute and 
should be called outside of the execution loop. For example, following functions can take a lot of 
time to execute: 

clCreateProgramWithSource()  
clBuildProgram() 
clLinkProgram() 
clUnloadPlatformCompiler() 

 To reduce the execution time during application startup, use clCreateProgramWithBinary 
instead of clCreateProgramWithSource. See Section 5.7.3 for more details. Section  

NOTE: Do not forget to fall back to building from source when clCreateProgramWithBinary fails. 
This could occur, though rarely, if the OpenCL software has incompatible updates. 

 Avoid creating or releasing memory objects between NDRange calls. The execution time of 
clCreate{Image|Buffer} is related to the amount of memory requested (if host_ptr is 
used).  

 If possible, use Android ION memory allocator. clCreate{Buffer|Image2D} can create 
memory objects with an ION pointer instead of allocating additional memory and copying it. 
Section 7.4 discusses how to use the ION memory.  

 Try to reuse memory and context objects in OpenCL to avoid creating new objects. Overall, 
the host should be doing a lightweight work during the GPU kernel launch to avoid stalling 
GPU’s execution.  
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5.7.2  Use event-driven pipeline 
The OpenCL enqueue API functions may accept an event list that specifies all the events that 
must be complete before the current API function starts to execute. Meanwhile, the enqueue API 
functions can also emit an event ID to identify themselves. The host simply submits the API 
functions and kernels to GPU for execution without worrying about their dependency and 
completeness, if the dependency is correctly specified in the event list parameters. By using this 
method, the overhead of launching API function calls is reduced significantly, as the software can 
schedule the functions in its best way and the host does not have to interfere in between the API 
function calls. Therefore, it is highly desirable to streamline the API functions using event driven 
pipeline. In addition, developers should note:  

 Avoid blocking API calls. A blocking call stalls the CPU to wait for the GPU to finish, then 
stalls the GPU before the next clEnqueueNDRangeKernel call. Blocking API calls is 
useful mostly for debugging.  

 Use callback functions. Starting with OpenCL 1.2, many API functions are enhanced or 
modified to accept user-defined callback functions to handle events, and this asynchronous 
call mechanism allows more efficient pipeline execution as the host is now more flexible to 
handle the events.  

5.7.3  Kernel loading and building 
Loading and building kernel source at runtime can be expensive. Some applications may prefer to 
generate source code on-the-fly, as some parameters may not be available upfront. This may be 
fine if generation and compilation of the source code do not affect GPU execution. But in general, 
dynamic source code generation is discouraged. 

Instead of building the source code on-the-fly, a better way is to build the source code offline and 
use the binary kernel only. When the application is loaded, the binary kernel code is loaded as 
well. Doing so would significantly reduce the overhead of loading code from disk. 

If the application targets different tiers of Adreno devices, different versions of the binary code 
are needed. A few things to note regarding compatibility:  

 Binary code can be used only for the specific GPU for which it was compiled. If a binary was 
built on a device that has the Adreno A530 GPU, it cannot be used on a device that has the 
Adreno A540 GPU. 

 Backward compatibility is available across compiler versions. Newer versions of the 
compiler may support an older binary, provided that the target GPU is the same. 

If an incompatible binary kernel is found, use clCreateProgramWithSource as a fall back 
solution.  

5.7.4  Use in-order command queues 
The Adreno OpenCL platform has support for out-of-order command queues. However, there is a 
greater overhead due to the dependency management required for implementing out-of-order 
command queues. The Adreno software pipelines commands sent to an in-order queue. 
Therefore, it is good practice to use in-order command queues rather than out-of-order command 
queues. 
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6  Workgroup size performance optimization 

Workgroup size tuning is a simple and effective optimization method for many kernels. This 
chapter presents the fundamental information on workgroup size, such as how to get workgroup 
size, why workgroup size is important, some common practices on optimal workgroup selection 
and tuning are also discussed.  

6.1  Obtain the maximum workgroup size 
The maximum workgroup size of a kernel on a device can be queried by using the following API 
function after running clBuildProgram: 

 size_t maxWorkGroupSize; 
 clGetKernelWorkGroupInfo(myKernel,  
      myDevice,  
      CL_KERNEL_WORK_GROUP_SIZE,  
      sizeof(size_t),  
      &maxWorkGroupSize,  
      NULL ); 

The actual workgroup size used by clEnqueueNDRangeKernel cannot exceed 
maxWorkGroupSize. If the workgroup size is not specified by the application, the Adreno 
OpenCL software may select a maximum working workgroup size. 

6.2  Required and preferred workgroup size 
A kernel may be written in a way that certain workgroup size is required or preferred. OpenCL 
provides following methods for requesting specific workgroup size to the compiler:  

 Use the reqd_work_group_size attribute  

The reqd_work_group_size(X, Y, Z) attribute passes in a specific work group size as a 
requirement. An error is returned if the specified work group size cannot be satisfied. 

For example, to require 16x16 work group size: 
 
 __kernel  __attribute__(( reqd_work_group_size(16, 16, 1) ))  
  void myKernel( __global float4 *in, __global float4 *out)  
  {  . . .  }  
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 Use the work_group_size_hint attribute  

The OpenCL software attempts to use the specified size, but does not guarantee the actual 
workgroup size matches the hint. For example, to hint 64x4 work group size: 
 
 __kernel __attribute__(( work_group_size_hint (64, 4, 1) ))  
  void myKernel( __global float4 *in, __global float4 *out)  
  {  . . .  }  
 

In most cases, the compiler cannot guarantee that it generates the optimal machine code if the 
workgroup size restriction is imposed. Also, the compiler may have to spill registers to the 
system’s random-access memory (RAM), if it cannot meet the required workgroup size using the 
on-chip registers. Therefore, the use of these two attributes is discouraged, unless the kernel is 
written in a way that a specified workgroup size is mandatory for the kernel to work. 

NOTE: For cross-platform compatibility purposes, it is not a good practice to write kernel that relies on a 
fixed workgroup size or layout.  

6.3  Factors affecting the maximum workgroup size 
If no workgroup size attributes are specified, the maximum workgroup size of a kernel depends 
on many factors:  

 Register footprint of the kernel. Generally, the more complex the kernel is, the larger the 
register footprints, and smaller the maximum workgroup size. Factors that could raise register 
footprint are as follows: 

 Packing more workload for each work item 

 Control flow 

 High precision math functions (e.g., not using the native math functions or fast math 
compilation flag) 

 Local memory, if this leads to allocating additional registers to temporarily store source 
and destination of load/store instructions.  

 Private memory, e.g., an array defined for each work item. 

 Loop unrolling 

 Inline functions 

 Size of the general purpose register (GPR) File 

 Adreno low tiers may have smaller register file size.  

 Barriers in kernel 

 If a kernel does not use barriers, the maximum workgroup size can be set to DEVICE 
MAXIUMUM in the Adreno A4x and A5x series, regardless of the register footprint. 
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6.4  Kernels without barrier  
Traditionally, all work items in the workgroup have been required to be resident on the GPU at 
the same time. For kernels that have heavy register footprint, this can restrict their workgroup size 
to be well below the device maximum. 

Starting from the Adreno A4x series, kernels without barrier can have the maximum workgroup 
size that Adreno supports, typically 1024, despite their complexity. As there is no synchronization 
required between waves, for these types of kernels, a new wave can start to execute when an old 
wave is complete.  

In this case, having the maximum workgroup size does not mean that they have good parallelism. 
A kernel without barriers could be so complex that only a few waves run in parallel inside SP, 
which would result in poor performance. Developers should continue to optimize and minimize 
the register footprint, regardless of the maximum workgroup size obtained from the 
clGetKernelWorkGroupInfo function.  

6.5  Workgroup size tuning 
This section describes general guidelines in selecting the best workgroup size and shape.  

6.5.1  Avoid using default workgroup size 
If a kernel call does not specify the workgroup size, the OpenCL software will find a working 
workgroup size using some simple mechanism. Developers should be aware that the default 
workgroup size is unlikely to be optimal. It is always a good practice to try different workgroup 
size and shape layout (for 2D/3D) manually and find the optimum one.  

6.5.2  Large workgroup size, better performance? 
This is true for many kernels, as increasing the workgroup size allows more waves to be resident 
on the SP, which often translates to better latency hiding and improved SP utilization.  

However, for some kernels, performance may deteriorate with increasing workgroup sizes. An 
example is when larger workgroup size results in increased cache thrashing, due to poor data 
locality and access patterns. The locality problem is also acute for texture accesses, because the 
texture cache is typically smaller than the unified L2 cache. Ultimately, it is the nature of data 
access within the kernel that determines the best workgroup size and shape.  

6.5.3  Fixed vs. dynamic workgroup size  
For performance portability across devices, avoid making assumptions that one workgroup size 
fits all, and avoid hard coding workgroup size. A specific workgroup size and layout that works 
best on one device may be suboptimal on another. Therefore, given a kernel, it is advised to 
profile different workgroup sizes for all devices that the kernel can execute with, and select the 
best one for each device at runtime. 
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6.5.4  One vs. two vs. three-dimensional (1D/2D/3D) workgroup 
The dimensionality of a kernel may have performance implication. Dependent on the data access 
pattern by work items, in some cases a 2D kernel may have better data locality in cache, which 
leads to better memory access and better performance. While in other cases, a 2D kernel may 
result in worse cache thrashing than 1D kernel. It would be good to try different dimensions with 
the kernel for optimal performance. 

6.6  Other topics on workgroup size 

6.6.1  Global work size and padding 
OpenCL 1.x requires that the global worksize of a kernel needs to be a multiple of its workgroup 
size. If the application specifies a workgroup size that does not meet this condition, the 
clEnqueueNDRangeKernel call will return an error. In such a case, the application can pad the 
global work size such that it becomes a multiple of the user specified workgroup size. 

NOTE: OpenCL 2.0 lifts this restriction, and the global worksize does not have to be multiple of the 
workgroup size, which is called non-uniform workgroups.  

Ideally, the workgroup size in its first dimension should be a multiple of the wave size (32 for 
example) to fully utilize the wave resources. If this is not the case, consider padding the 
workgroup size to meet this condition, keeping in mind that the global worksize may also need to 
be padded for OpenCL 1.x. 

6.6.2  Brute force search 
Due to the complexity involved in workgroup size selection, experimentation is often the best 
way to find the optimal size and shape. 

One option is to use a warm-up kernel that has similar complexity as the actual workload (but 
perhaps using smaller workload) to dynamically search the optimal workgroup size at the start of 
the application. The selected workgroup size is then used for the actual kernel. Many commercial 
benchmarks rely on this method. 

6.6.3  Avoid uneven workload across workgroups  
Some applications may be written in a way that uneven workload across workgroups could occur. 
For instance, some region based image processing use cases may have some regions that need a 
lot more processing than the other regions. This should be avoided as the performance may be 
unpredictable. In addition, it can complicate the context switch, if any single workgroup takes too 
long to finish. 

A method to overcome this issue is to adopt a two-stage processing strategy. The first stage may 
collect the interesting points and prepare data for the second stage to process. The workload is 
more deterministic, which might make it easier to distribute equally across workgroups. 
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6.6.4  Workgroup synchronization 
OpenCL does not guarantee the execution order of workgroups and does not define a mechanism 
to do workgroup synchronization. It is not recommended to have the application depend on the 
workgroup orders.  

In practice, it is possible to do limited synchronization across workgroups by using atomic 
functions or other methods. For example, the application may allocate a global memory object 
that is updated atomically by work items from different workgroups. A workgroup can monitor 
the memory object that is updated by the other workgroups. By this way, it is possible to achieve 
limited workgroup synchronization.  
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7  Memory performance optimization 

Memory optimization is the most important and effective OpenCL performance technique. A 
significant number of applications are memory bound rather than compute bound. Mastering 
memory optimization is therefore essential for OpenCL optimization. In this chapter, the OpenCL 
memory model is reviewed, followed by the best practices.  

7.1  OpenCL memories in Adreno GPUs 
OpenCL defines four types of memory—namely, global, local, constant, and private memory—
and understanding the differences between them is essential. Figure 7-1 illustrates a conceptual 
layout of these four types of memory.  

 
Figure 7-1  OpenCL conceptual memory hierarchy 

The OpenCL standard only defines these memory types conceptually, and how they are 
implemented is vendor-specific. The physical locations may be different from its conceptual 
location. For example, private memory objects may be allocated in the off-chip system RAM 
which is far away from GPU. 

Table 7-1 lists the definition of the four types of memory, and their latency and physical location 
in Adreno GPUs. In Adreno GPUs, both local and constant memory are supported by on-chip 
RAM and have much shorter latency than the off-chip system RAM.  
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Generally, it is recommended to use local and constant memory for data that need frequent access 
to take advantage of the short latency property. More details are presented in the following 
sections.  

Table 7-1  OpenCL memory model in Adreno GPUs 

Memory Definition Relative latency Location 

Local Shared by all work items 
in a work group 

Medium On-chip, inside SP 

Constant Constant for all work 
items in a work group 

Low for on-chip allocation, 
and high otherwise 

On-chip if it can fit in. 
Otherwise in system RAM 

Private Private to a work item Based on where the memory 
is allocated by the compiler 

In SP as register or local 
memory or in system RAM 
(compiler determined) 

Global Accessible by all work 
items in all work groups 

High System RAM 

7.1.1  Local memory 
Adreno GPUs support fast on-chip local memory, while the local memory size varies from 
series/tiers to series/tiers. Prior to using local memory, it is a good practice to query how much 
local memory is available per workgroup for the device using the following API:  

  clGetDeviceInfo(deviceID, CL_DEVICE_LOCAL_MEM_SIZE, .. ) 

Here are the guidelines for using local memory.  

 Use local memory to store data that is used repeatedly or to store intermediate results between 
two stages within a kernel. 

 An ideal scenario is when work items access the same content multiple times, and more 
than twice  

– For example, consider a window-based motion estimation using object matching for 
certain video processing. Suppose each work item processes a small region of 8x8 
pixels within a search window of 16x16 pixels, leading to a lot of data overlap 
between neighboring work items. Local memory cancan be a good fit to store the 
pixels in this case to reduce the redundant fetch.  

 Barriers used for data synchronization across work items may be expensive 

 If there is data exchange between work items, for example, work item A writes data to 
local memory and work item B reads from it, a barrier operation is required due to the 
relaxed memory consistency model in OpenCL. 

 Barrier often results in a synchronization latency that stalls ALUs, leading to lower ALU 
utilization.  

 In some situations, caching data into local memory leads to synchronization latency that 
washes out the benefits of using local memory. In such a case, using global memory 
directly—to avoid barrier—may be a better option.  

 Use vectorized local memory load/store 

 Using a vectorized load of up to 128 bits (e.g., vload4_float) that is 32-bit aligned is 
recommended. 
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 Vectorized data load/store is discussed in more details in Section 7.2.2.  

 Allow each work item to participate in local memory data load rather than use one work item 
to do the entire load  

 Avoid having only one work item to load/store entire local memory for the workgroup.  

 Avoid using the function called async_work_group_copy. It is often difficult for compiler 
to generate the optimal code to load local memory and better for developers to write code that 
manually loads data into local memory.  

7.1.2  Constant memory 
Adreno GPUs support on-chip constant memory. It has the best latency and superior performance 
among the four types of memory. Constant memory is usually used in the following cases:  

 Scalar and vector variables defined with constant qualifier are usually stored in constant 
RAM.  

 An array defined with constant qualifier is stored in constant RAM, if it is defined in 
program scope (e.g., the compiler can determine its size) and there is sufficient space is 
constant RAM. 

 Scalar or vector data types for kernel arguments are stored in constant RAM. For example, 
coeffs in the following example will be stored in constant RAM: 
 
 __kernel void myFastKernel(__global float* bar, float8 coeffs) 
 { //coeffs will be mapped to constant RAM } 
 

 Scalar and vector variables and arrays which are qualifies by __constant but do not fit into 
constant RAM, will be allocated in system RAM. 

 To have an array defined in kernel argument load into constant RAM, an attribute called 
max_constant_size(N) must be provided to indicate the size of the constant array, where N 
represents the number of bytes required. In the following example 1024 bytes in the constant 
RAM is allocated for the variable foo:  
 
 __kernel void myFastKernel( 
 __constant float foo* __attribute__( (max_constant_size(1024))) 
 { . . . } 
 

Specifying the max_constant_size attribute is important. Without this attribute, the array is 
stored in the off-chip system RAM, since the compiler does not know the size of the array and 
cannot promote it to the on-chip RAM.  

NOTE: This feature is only supported for 16-bit and 32-bit arrays; 8-bit arrays are not supported. Also, if 
there is insufficient space in constant memory to allocate the array, it is stored in the off-chip 
system RAM instead. 

NOTE: Constant RAM may not be optimal for an array that is dynamically indexed, and divergently 
accessed by work items. For example, if one work item fetches index 0 and the next one fetches 
index 20, constant memory is inefficient. Using an image object is a better choice in this case.  
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7.1.3  Private memory 
In OpenCL, private memory is private to each work item and not accessible by other work items 
in the workgroup. Physically, private memory could reside in on-chip registers or off-chip system 
RAM. The exact location depends on several factors and here are a few typical cases: 

 Scalar variables are stored in registers, which is the fastest memory.  

 If no enough registers, private variables will be allocated in system RAM. 

 Private arrays may be stored in:  

 Local memory, though it is not guaranteed 

 Off-chip system RAM, if they exceed local memory capacity 

Storing private memory into off-chip system RAM is highly undesirable as system RAM is 
slower and private memory access patterns are not cache friendly, especially if the amount of 
private memory per work item is large. Here are several recommendations:  

 Avoid defining any private array in kernels. Try to use vector if possible.  

 Replace private array with global or local array and design its layout so that the access of the 
array elements can be coalesced across multiple work items. The cache performance could be 
a lot better.  

 Use vectorized private memory load/store, i.e., try to load/store up to 128-bit per transaction.  

7.1.4  Global memory 
OpenCL application can use two types of global memory objects, buffer and image, and both use 
the off-chip system RAM. As compared to a buffer object which is simple one-dimensional data 
array stored in system RAM, image object is an opaque memory object in the sense that 
developers cannot assume the layout or format of how data are stored internally. When an image 
object is created, the software arranges the data in certain ways for GPU to access more 
efficiently. The optimal ways to use them are quite different and discussed in the following 
sections.  

7.1.4.1  Buffer 
Buffer objects store one-dimensional collection of elements, which can be scalar data types (such 
as integer, floating point), vector data type, or user-defined structures. A buffer object is created 
using the following API function: 

cl_mem clCreateBuffer (cl_context context, 
     cl_mem_flags flags, 
     size_t size, 
     void *host_ptr, 
     cl_int *errcode_ret) 

Buffer objects are stored in global memory and accessed via the L2 cache in Adreno GPUs. In 
this function, the most important parameter is cl_mem_flags. OpenCL allows many different 
flags for this function, and how to select and combine these flags is extremely important for 
performance. Here are a few points:  

 Some flags may incur an extra memory copy. Try to use zero-copy flags that are discussed in 
Section 7.4. 
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 Some flags are meant for desktop/discrete GPUs with dedicated GPU memory.  

 Use the flags that are most accurate. The general idea is that as the flags are more restrictive, 
the OpenCL driver can find better configurations for the object and improve its performance. 
For instance, it can impose a cache flush policy (write-through, write-back, etc.) that best fits 
the memory object. Section 7.4.2 has more details on the cache policy and its implication for 
performance. Here are a few examples:  

 If the memory is read-only by host, then use CL_MEM_HOST_READ_ONLY.  

 If the memory has no access by host, then use CL_MEM_HOST_NO_ACCESS. 

 If the memory is for host to write only, use CL_MEM_HOST_WRITE_ONLY. 

7.1.4.2  Image 
An image object is used to store a one-, two-, or three-dimensional texture, frame buffer, or an 
image data, and the layout of data inside the image object is opaque. In practice, the content in the 
object does not have to be associated with an actual image data. Any data can be stored as image 
object to utilize the hardware texture engine and its L1 cache in Adreno. 

An image object is created using the following API: 
cl_mem clCreateImage(cl_context context, 
         cl_mem_flags flags, 
         const cl_image_format *image_format, 
         const cl_image_desc *image_desc, 
         void *host_ptr, 
         cl_int *errcode_ret) 

Notice that cl_mem_flags for image has the similar rule of thumb to the buffer object as 
discussed in the previous section.  

There are many image formats and data types supported in Adreno GPUs. From the Adreno A3x 
GPUs to the Adreno A5x GPUs, new pairs of image format and data type have been added. Users 
may use the function clGetSupportedImageFormats to get a full list of the supported image 
format/data type.  

To fully utilize the memory bandwidth, it is recommended to use the pairs whose length is of 
128-bit, e.g., CL_RGBA/CL_FlOAT, CL_RGBA/CL_SIGNED_INT32, etc.  

7.1.4.3  Using image object vs. buffer object 
Using image object over buffer object has following advantages:  

 Leverage the texture engine hardware.  

 Leverage the L1 cache 

 Handling of image boundary is built-in.  

 Supports numerous image format and data type combinations listed under “Image” in 
Section 7.1.4, with support for automatic format conversions. 

OpenCL supports two sampler filters, CLK_FILTER_NEAREST and CLK_FILTER_LINEAR. For 
CLK_FILTER_LINEAR, the proper combination of image type allows the GPU to do automatic 
bilinear interpolation using its built-in texture engine. 
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For example, assume an image is of type CLK_NORMALIZED_COORDS_TRUE and 
CL_UNORM_INT16, i.e., image date is 2-byte unsigned short. Function call read_imagef will do 
the following: 

 Reads pixels from image object (which is then cached in L1 cache). 

 Interpolates neighboring pixels in hardware. 

 Converts and normalizes it to the range of [0, 1]  

This is convenient for bilinear or trilinear interpolation operations.  

Sometimes a buffer object may be a better choice:  

 More flexible data access:  

 Image object only allows access at the pixel size boundary, for example, 128-bit for 
RGBA and 32-bit/channel image object. 

 For buffer object, Adreno supports byte addressable access. For example, 128-bit data 
could be loaded from any byte address in a buffer object, if it is not out of the buffer 
boundary. 

 If L1 becomes the bottleneck.  

 For example, there is serious L1 cache thrashing, which makes L1 cache access 
inefficient.  

 A buffer object can be read and write inside kernels. Although image object can also be read 
and write from OpenCL 2.0, its performance is generally worse due to synchronization 
requirement.  

Table 7-2  Buffer vs. image in Adreno GPUs 

Features Buffer Image 

L2 cache Yes Yes 
L1 cache No Yes 
Support read and write object Yes No in OpenCL 1.x 

Yes, in OpenCL 2.x (synchronization required) 
Byte addressable  Yes No 
Built-in hardware interpolation No Yes 
Built-in boundary handling No Yes 
Support image format/sampler No Yes 

7.1.4.4  Use of both Image and buffer objects 
Instead of using texture object only or buffer object only, a better way is to have both 
UCHESP and UCHETPL1SP paths fully utilized. As TPL1 has L1 cache, storing L1 the 
most frequently used but relatively small amount of data is a good practice.  
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7.1.4.5  Global memory vs. local memory 
One use case of local memory is to load data into local memory first, synchronize to make sure 
the data are ready, and then the work items in the workgroup can use it for processing. However, 
using global memory may be better than LM due to the following reasons:  

 May have better L2 cache hit ratio and better performance 

 Code is simpler than local memory and have a larger work group size 

7.2  Optimal memory load/store 
In previous sections we discussed the general guidance on how to use different type of memory. 
In this section, we will go over a few key and general points that are critical for performance 
regarding memory load/store.  

7.2.1  Coalesced memory load/store 
Coalesced load/store refers to the capability of combining load/store requests from multiple 
neighboring work items, as mentioned in Section 3.3.1 for local memory access. Coalesced 
access is also important for global memory load/store.  

Coalesced store works in a similar manner to read, except that load is a 2-way process (request 
and respond), while store is a 1-way process. Therefore, coalesced load is generally more critical 
than store.  

In Adreno GPUs, hardware coalesced access has been enabled gradually since the Adreno A4x 
GPUs, as shown in Table 7-3. Private memory does not support coalesced access.  

Table 7-3  Coalesced access support in Adreno GPUs 

Load/store Adreno A3x Adreno A4x Adreno A5x 

Global memory coalesced load No No Yes 
Global memory coalesced store No Yes No 
Local memory coalesced load/store No No Yes 

7.2.2  Vectorized load/store 
Vectorized load/store refers to multiple data load/store in a vectorized way for single work items. 
This is different from coalesced access, which is for multiple work items. Here are a few key 
points to use vectorized load/store: 

 For each work item, it is recommended to load data in chunk of multiple bytes, e.g., 64-
bit/128-bit, the bandwidth can be better utilized.  

 For example, multiple 8-bit data can be manually packed into one element (e.g. 64-
bit/128-bit), which is loaded using vloadn, and then unpacked using as_typeN function 
(e.g., as_char16).  

 See the vectorized operation example in Section 9.2.3. 

 For optimal SP to L2 bandwidth performance, load/store memory address should be 32-bit 
aligned. 

 There are two methods to do vectorized load/store:  
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 Use built-in function (vload/vstoren), which is well defined in OpenCL.  

 Alternatively, pointer cast can be used to do vectorized load/store as follows: 
  char *p1; char4 vec; 
  vec = *(char4 *)(p1 + offset); 

 It is recommended to use vectorized load/store instructions that take up to 4 components. 
Vectorized load of data type with more than 4 components would be divided into multiple 
load/store instructions with each of them taking no more than 4 components. 

 Avoid loading too many data in one work item.  

 Loading too many data may result in higher register footprints, which could lead to a 
smaller work group size and hurt performance. In the worst cases, it may cause register 
spilling, i.e., compiler must use system RAM to store variables. 

NOTE: Vectorized ALU calculations can also improve performance, though generally not as much as the 
one from vectorized memory load/store. 

7.2.3  Optimal data type 
Data type is important as it affects not just memory traffic but also the ALU operations. Here are 
a few rules for data type: 

 Check data types in each stage of the application pipeline and make sure that the data type 
used is consistent across the entire pipeline.  

 Use shorter data types if possible to reduce memory fetch/bandwidth, and increase the 
number of ALU available for execution. 

7.2.4  16-bit floating (half) vs. 32-bit floating 
Using of half data type instead of floating data type is highly recommended as Adreno GPUs 
have dedicated hardware to accelerate half data type calculation. The gflops of half ALUs is 
almost twice of full ALUs. Here are some rules:  

 16-bit half has limited precision support. It can only precisely represent data within much 
narrowed range. 

 For example, it can only accurately represent [0, 2048] on integer values. 

 Convert half to float for calculation if half data calculation causes unacceptable precision 
loss. But store the results as half data type.  

7.3  Atomic functions 
A set of local and global atomic functions are defined in OpenCL, and Adreno GPUs natively 
support all of them in hardware. Here some rules when using atomic functions:  

 Avoid frequently updating a single global atomic memory address by work items from single 
or multiple workgroups, as atomic operations are serialized operations and their performance 
is usually not good as parallel operations. 

 Try to use local atomic first and have a single update to global memory atomically.  
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7.4  Zero copy 
Adreno OpenCL provides a few mechanisms to avoid costly memory copy that could occur at 
host side. Dependent on how the memory object is created, there are a few different options to 
avoid excessive copy.  

7.4.1  Use map over copy 
Assume that the OpenCL application has full control over the data flow, i.e., the target and source 
memory object creation are all managed by the OpenCL application. This is the simplest case and 
memory copy can be avoided by using the steps as follows:  

 When creating a buffer/image object, use the flag CL_MEM_ALLOC_HOST_PTR, and follow the 
steps as follows:  

 First set cl_mem_flags input in clCreateBuffer: 
cl_mem Buffer = clCreateBuffer(context,  
      CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR, 
      sizeof(cl_ushort) * size, 
      NULL, 
      &status); 

 Then use the map function to return a pointer to the host:  
cl_uchar *hostPtr = (cl_uchar *)clEnqueueMapBuffer( 
      commandQueue, 
      Buffer, 
      CL_TRUE, 
      CL_MAP_WRITE, 
      0, 
      sizeof(cl_uchar) * size, 
      0, NULL, NULL, &status); 

 Host updates the buffer using the pointer hostPtr.  

– For example, host can fill camera data or read data from disk into the buffer 

 Unmapped the object:  
  status = clEnqueueUnmapMemObject( 
    commandQueue,  
    Buffer,  
    (void *) hostPtr, 
    0, NULL, NULL); 

 The object can be used by OpenCL kernels. 

CL_MEM_ALLOC_HOST_PTR is the only method to avoid copying of data in this scenario. With the 
other flags, such as CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR, driver will have to do 
additional memory copy for GPU to access.  
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7.4.2  Avoid memory copy for objects allocated not by OpenCL 

7.4.2.1  ION memory extensions 
If a memory object is initially created outside the scope of the OpenCL API and is allocated using 
ION/Gralloc, the cl_qcom_ion_host_ptr extension can be used to create a buffer/image 
object, which maps its ION memory to GPU accessible memory without incurring extra copy. 

NOTE: Use of ION memory through the QTI extension to avoid memory copy is illustrated by a detailed 
sample code that can be provided on request. 

7.4.2.2  QTI Android native buffer (ANB) extension 
In many camera and video processing use cases, ANB (allocated by gralloc) must be shared. 
Sharing is possible because the buffers are based on ION. However, to use the ION path, the 
developer needs to extract internal handles from these buffers, which requires access to QTI’s 
internal headers. The cl_qcom_android_native_buffer_host_ptr extension offers a more 
straightforward way to share ANBs with OpenCL without needing access to QTI headers. This 
enables ISVs and other third-party developers to implement zero copy technique for ANBs. 

NOTE: A sample that illustrates use of the cl_qcom_android_native_buffer_host_ptr extension 
can be provided on request. 

7.4.2.3  Using standard EGL extensions 
The cl_khr_egl_image extension creates an OpenCL image from an EGL image. The main 
benefits that come with this are: 

 It is standard; code written to use this technique will most likely work for other GPUs that 
support it. 

 EGL/CL extensions (cl_khr_egl_event and EGL_KHR_cl_event) that are designed to 
work with this extension make more efficient synchronization possible. 

 YUV processing is a little easier with the EGL_IMG_image_plane_attribs extension. 

7.5  Improve cache usage 
To have a good cache usage, the following rules should be followed: 

 Check cache thrashing and cache usage efficiency. Snapdragon Profiler can provide cache 
access information, such as the number of bytes for load/store and cache hit/miss ratio.  

 If the number of bytes to load into UCHE is a lot higher than what is expected by the 
kernel, it is possible that there is cache thrashing.  

 Metrics such as the L1/L2 hit/miss ratios can tell how well the cache is used.  

 Avoid thrashing by doing the following:  

 Adjust the workgroup size, such as reduce workgroup size 

 Change access pattern, e.g., change the dimensionality of kernel.  
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 If there is cache thrashing when using loops, adding atomics or barrier in the loop may 
reduce the chances of thrashing.  

7.6  CPU cache operations 
For memory objects that are cacheable, the OpenCL driver must flush and/or invalidate the CPU 
cache at appropriate times. This ensures that both the CPU and the GPU see the most current 
copy of the data when they attempt to access it. For example, the CPU cache must be invalidated 
when mapping the output buffer of a kernel for reading by the host CPU. The OpenCL driver has 
a sophisticated CPU cache management policy which attempts to minimize the number of cache 
operations by tracking data visibility on a per memory object basis and by deferring operations to 
the extent possible. For example, there could be a CPU cache flush on an input buffer right before 
a kernel is launched. 

CPU cache operations have a very measurable cost, which can be observed as a delta between 
CL_PROFILING_COMMAND_QUEUED and CL_PROFILING_COMMAND_SUBMIT for 
clEnqueueNDRangeKernel, as shown in Figure 4-1. In some cases, the execution time of 
clEnqueueMapBuffer/Image and clEnqueueUnmapBuffer/Image can increase. The cost of 
a CPU cache operation generally increases linearly along with memory object size.  

To minimize the cost of CPU cache operations, the application pipeline should be structured so 
that processing is not moved back and forth between CPU and GPU. In addition, the application 
should allocate memory objects in such a way that the data which is subject to back and forth 
CPU and GPU access is in a different memory object from the data which has only one access 
transition. 

The memory objects should be created using the CPU cache policy that is appropriate for their 
intended usage. When allocating memory for buffer objects or image objects, the driver will 
select the CPU cache policy. The default CPU cache policy is write-back. However, if either 
CL_MEM_HOST_WRITE_ONLY or CL_MEM_READ_ONLY is specified in flags, the driver will assume 
that the application does not intend to read the data using the host CPU. In that case, the CPU 
cache policy is set to write-combine.  

For externally allocated memory objects such as with ION and ANB mechanisms, the application 
has more direct control over CPU cache policy. When importing these objects into OpenCL the 
application must set the CPU cache policy flag correctly.  

7.7  Use of SVM 
The Adreno A5x GPUs support coarse-grain SVM, a key feature in the OpenCL 2.0 full profile. 
With SVM, the host and device memory addresses are identical. SVM feature in OpenCL 2.0 
allows the memory to be shared across host and device easily, and accessing the host pointer on 
OpenCL device is now possible.  

For coarse-grain SVM, accessing the memory by host or devices is limited at the synchronization 
points (map/unmap). This can greatly facilitate applications that need to work with pointer based 
data structure across host and device.  
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7.8  Best practices to reduce power/energy consumption 
Power and energy is a major factor for mobile applications. Applications with optimal 
performance may not have the best power/energy performance and vice versa. Therefore, it is 
important to understand power/energy and performance requirement. There are several tips on 
reducing power and energy consumption for OpenCL:  

 Try all means to avoid memory copy, for example, using ION memory to achieve zero-copy, 
and using CL_MEM_ALLOC_HOST_PTR when creating buffers with clCreateBuffer. Also 
avoid using the OpenCL APIs that do data copy.  

 Minimize the memory transaction between host and device. This can be achieved by storing 
memory in constant memory or local memory, using shorter data type, reducing data 
precision, and eliminating private memory usage, etc.  

 Optimize kernels and improve their performance. The faster a kernel can run, generally the 
less energy or power it would consume.  

 Minimize software overhead. For example, use event-driven pipeline to reduce the host and 
device communication overhead. Avoid creating too many objects, and avoid creating or 
releasing objects in between kernel execution. 
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8  Kernel performance optimization 

This section presents tips on kernel optimization.  

8.1  Kernel fusion or splitting 
A complex application may contain a lot of stages. For OpenCL porting and optimization, one 
may ask how many kernels should be developed. It is hard to answer as there are many factors 
involved. Here are a few high-level criteria:  

 Good balance between memory and compute 

 Enough waves to hide latency 

 No register spilling  

These could be achieved by doing the followings:  

 Split a big kernel into multiple small kernels, if doing this yields better data parallelization.  

 Fuse multiple kernels into one kernel (kernel fusion), if memory traffic can be reduced and 
parallelization can be maintained, e.g., workgroup size is reasonably large.  

8.2  Compiler options 
OpenCL supports some compiler options that are defined in Section 5.6.4 of The OpenCL 
Specification found in References. Compiler options are passed in through the APIs 
clCompileProgram and clBuildProgram. Multiple options can be combined: 

clBuildProgram( myProgram,  
   numDevices,  
   pDevices,  
   “-cl-fast-relaxed-math ”, 
   NULL,  
   NULL ); 

With these options, developers can enable some functionality for its own purpose. For example, 
using -cl-fast-relaxed-math allows the kernel to be built using fast math rather than the 
OpenCL conformant math that has much higher precision requirement per OpenCL specification. 



Qualcomm Snapdragon OpenCL General Programming and Optimization  Performance optimization: kernel 

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 49 
 

8.3  Conformant vs. fast vs. vs. native math functions 
The OpenCL standard defines many math functions in the OpenCL C language and by default all 
the math functions must meet the IEEE 754 single precision floating-point math requirements, as 
required by the OpenCL specification. Adreno GPUs have a built-in hardware module, the 
elementary function unit (EFU), to accelerate some primitive math functions. Many math 
functions that are not directly supported by EFU have been either optimized by combining EFU 
and ALU operations, or emulated using complex algorithms by the compiler. Table 8-1 shows a 
list of OpenCL-GPU math functions categorized based on their relative performance. It is a good 
practice to use the high-performance ones, for example, functions in category A. 

Table 8-1  Performance of OpenCL math functions (IEEE 754 conformant) 

Category Implementation Functions (refer to the OpenCL standard for more details) 

A  Simple using ALU 
instructions only 

ceil, copysign, fabs, fdim, floor, fmax, 
fmin, fract, frexp, ilogb, mad, maxmag, 
minmag, modf, nan, nextafter, rint, round, 
trunc 

B  EFU only or EFU plus 
simple ALU instructions 

asin, asinpi, atan, atanh, atanpi, cosh, exp, 
exp2, rsqrt, sqrt, tanh 

C  Combination of ALU, 
EFU, and bit 
maneuvering 

acos, acosh,acospi,asinh,atan2, atan2pi, 
cbrt, cos, cospi, exp10, expm1, fmod, hypot, 
ldexp, log, log10, log1p, log2, logb, pow, 
remainder, remquo, sin, sincos, sinh, sinpi 

D  Complex software 
emulation 

erf, erfc, fma, lgamma, lgamma_r, pown, powr, 
rootn, tan, tanpi, tgamma 

 
Alternatively, developers may choose to use native or fast math instead of conformant math 
functions, if the application is not precision sensitive. Table 8-2 summarizes the three options for 
using math functions.  

 For fast math, enable -cl-fast-relaxed-math in the clBuildProgram call. 

 Use native math functions: 

 Math functions that have native implementation are native_cos, native_exp, 
native_exp2, native_log, native_log2, native_log10, native_powr, 
native_recip, native_rsqrt, native_sin, native_sqrt, native_tan; 

 Here is an example to use native math: 

– Original: int c = a / b; // Both a and b are integers 

– Use native instruction: int c = (int)native_divide((float)(a), 
(float)(b)); 
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Table 8-2  Math function options based on precision/performance 

Math 
functions Definition How to use Precision 

requirement Performance Typical use 
cases 

Conformant Follow IEEE 754 
single precision 
floating-point 
math 
requirement 

Default Strict Low Scientific 
computing, 
precision 
sensitive use 
cases 

Fast Fast math with 
lower precision 

Kernel build option:  
-cl-fast-
relaxed-math 

Medium Medium Many image, 
video, and 
vision use 
cases 

Native Directly 
calculated by 
hardware 

Use 
native_function 
instead of function in 
kernel 

Low, vendor 
dependent 

High Image, video 
and vision use 
cases if not 
sensitive to 
precision loss 

 

8.4  Loop unrolling 
Loop unrolling is generally a good practice as it could reduce instruction execution cost and 
improve performance. The Adreno compiler can typically unroll loops automatically based on 
some heuristics. However, it is also possible that the compiler may choose not to fully unroll 
loops, based on factors such as register allocation budget, or the compiler cannot unroll it due to 
lack of some knowledge. In these cases, developer may give the compiler a hint, or manually 
force it to unroll the loops as follows:  

 A kernel may give a hint by using __attribute__((opencl_unroll_hint)) or 
__attribute__((opencl_unroll_hint(n))).  

 Alternatively, a kernel can use directive #pragma unroll to unroll loops. 

 The last option is to manually unroll loops  
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8.5  Avoid branch divergence 
Generally, GPUs are not efficient when work items in the same wave follow different execution 
paths. For divergent branches, some work items may have to be masked, resulting in lower GPU 
occupancy, as shown in Figure 8-1. Also, the conditional check code like if-else usually 
invokes the control flow hardware logic which is expensive.  

 
Figure 8-1  Pictorial representation of divergence across two waves 

There are some methods to avoid or reduce divergence and conditional checks. At the algorithm 
level, one may group the work items that fall into one branch into one nondivergent wave. At the 
kernel level, some simple divergent/conditional check operations can be converted to fast ALU 
operations. One example is shown in section 9.2.6, where a ternary operation handled by the 
expensive control flow logic is converted to an ALU operation. Another method is to use 
functions like select, which may use fast ALU operations instead of the control flow logic.  

8.6  Handle image boundaries 
Many operations may access pixels out of image’s boundaries, e.g., filtering, transform, etc. To 
better handle boundaries, the following options should be considered: 

 Pad the image upfront, if possible. 

 Use image object with proper samplers (texture engine handles it automatically). 

 Write separate kernels to handle boundaries, or let the CPU process the boundary. 

8.7  32-bit vs. 64-bit GPU memory access 
From the Adreno A5x GPUs, the 64-bit OS is becoming dominant, and many Adreno GPUs are 
enabled to support the 64-bit OS. The most important change in the 64-bit OS is that the memory 
space can be well over 4GB and the CPU supports 64-bit instruction sets. 

While the GPU can access 64-bit memory space, its use incurs extra complexity and there may be 
performance penalty.  
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8.8  Avoid use of size_t 
A 64-bit memory address poses complication for OpenCL kernel compilation in many cases and 
developers need to be careful. It is highly recommended to avoid defining variable as type of 
size_t inside kernels. For the 64-bit OS, a variable defined as size_t inside kernels may have 
to be treated as 64-bit long. Adreno GPUs must use two 32-bit registers to emulate 64-bit. 
Therefore, having size_t type of variables requires more register resources, which often 
translates to performance degradation due to less active waves and smaller workgroup sizes. So, 
developers should use 32-bit or shorter data types instead of size_t.  

For the built-in functions in OpenCL that return size_t, the compiler may try to derive and limit 
the scope based on its knowledge. For example, get_local_id returns the result as size_t, 
though local_id is never more than 32-bit. In this case, the compiler uses a short data type 
instead. However, it is generally a good practice to provide the compiler the best knowledge on 
data type, so that it can generate the optimal code.  

8.9  Generic memory address space 
OpenCL 2.0 introduces a new feature called generic memory address space, in which a pointer 
does not have to specify its address space. Prior to OpenCL 2.0, a pointer must specify its 
memory address space, which can be local, private, or global. With generic memory address 
space, a pointer could be dynamically assigned to different memory address spaces.  

While this feature allows developers to reduce their code base and reuse existing code, using of 
generic memory address space may have slight performance penalty because the GPU SP 
hardware needs to figure out the real memory space dynamically. It is recommended to precisely 
define the memory address space if developers clearly know its memory space. This would 
reduce ambiguity for compiler, and result in better machine code and improved performance. 

8.10  Miscellaneous  
Many other optimization tips, which look minor but could improve kernel performance, are as 
follows:  

 Precalculate values that do not change within the kernels. 

 It is wasteful to calculate a value that can be precalculated outside of the kernels. 

 Precalculated values can be passed to kernel through kernel arguments or with #define. 

 Use the fast integer built-in functions. Use mul24 for 24-bit integer multiplication, and 
mad24 for 24-bit integer multiplication and accumulation.  

 Adreno GPUs have native hardware support for mul24, while the 32-bit integer 
multiplication is emulated using more instructions.  

 If there are integer numbers within 24-bit range, using mul24 is faster than direct 32-bit 
multiplication.  

 Reduce EFU functions.  

 For example, the code like r=a/select(c,d,b<T), where a, b,and T are float 
variables, c and d are constant, can be rewritten as r=a*select(1/c,1/d, b<T), 
which avoids the reciprocal EFU function as 1/c and 1/d can be derived at compilation 
time by the compiler. 



Qualcomm Snapdragon OpenCL General Programming and Optimization  Performance optimization: kernel 

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 53 
 

 Avoid divide operations, especially integer divide.  

 Integer divide is extremely expensive on Adreno GPUs. 

 Instead of using divide, do a reciprocal operation using native_recip, as described in 
Section 8.3. 

 Avoid integer module operation, which is expensive. 

 For constant arrays, such as lookup tables, filter taps, etc., declare them outside the kernel 
scope.  

 Use mem_fence functions to split/group code sections. 

 The compiler has complex algorithms to generate the optimal code from global 
optimization perspective.  

 mem_fence can be used to prevent the compiler from shuffling/mixing the code before 
and after it.  

 mem_fence allows developers to manipulate some portion of the code for profiling and 
debugging.  

 Use bit shift operations instead of multiplication.  
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9  OpenCL optimization case studies 

In this chapter, a few examples are presented to demonstrate how to optimize using the 
techniques discussed in early chapters. In addition to a few simple code snippet demonstrations, 
two well-known image processing filters, Epsilon filter and Sobel filters, are step-by-step 
optimized by using many of the practices discussed in previous chapters. 

9.1  Application sample code 

9.1.1  Improve algorithm 

This example demonstrates how to simplify an algorithm to optimize its performance. Given an 
image, apply a simple 8x8 box blurring filter on it. 

Original kernel before optimization: 
__kernel void ImageBoxFilter(__read_only image2d_t source, 
        __write_only image2d_t dest, 
        sampler_t sampler) 
{ 
 ... // variable declaration 
 for( int i = 0; i < 8; i++ ) 
 { 
  for( int j = 0; j < 8; j++ ) 
  { 
   coor = inCoord + (int2) (i - 4, j - 4 ); 
   // !! read_imagef is called 64 times per work item 
   sum += read_imagef( source, sampler, coor); 
  } 
 } 
 // Compute the average 
 float4 avgColor = sum / 64.0f; 
 ... // write out result 
} 

To reduce texture access, the above kernel is split into two passes. The first pass calculates the 
2x2 average for each work item and saves the result to an intermediate image. The second pass 
uses the intermediate image for the final calculation. 
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Modified kernel: 
// First pass: 2x2 pixel average 
__kernel void ImageBoxFilter(__read_only image2d_t source, 
        __write_only image2d_t dest, 
        sampler_t sampler) 
{ ... // variable declaration 
   // Sample an 2x2 region and average the results 
 for( int i = 0; i < 2; i++ ) 
 { 
  for( int j = 0; j < 2; j++ ) 
  { 
   coor = inCoord - (int2)(i, j); 
   // 4 read_imagef per work item 
  sum += read_imagef( source, sampler, inCoord - (int2)(i, j) ); 
  } 
 } 
 // equivalent of divided by 4, in case compiler does not optimize 
 float4 avgColor = sum * 0.25f; 
 ... // write out result 
} 
// Second Pass: final average 
__kernel void ImageBoxFilter16NSampling( __read_only image2d_t source, 
         __write_only image2d_t dest, 
         sampler_t sampler) 
{ 
 ... // variable declaration 
 int2 offset = outCoord - (int2)(3,3); 
 // Sampling 16 of the 2x2 neighbors 
 for( int i = 0; i < 4; i++ ) 
 { 
  for( int j = 0; j < 4; j++ ) 
  { 
   coord = mad24((int2)(i,j), (int2)2, offset); 
   // 16 read_imagef per work item 
   sum += read_imagef( source, sampler, coord );  } 
 } 
 // equivalent of divided by 16, in case compiler does not optimize 
 float4 avgColor = sum * 0.0625; 
 ... // write out result 
} 

The modified algorithm accesses the image buffer 20 (4+16) times per work item, which is 
significantly less than the original 64 read_imagef accesses. 
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9.1.2  Vectorized load/store 

This example demonstrates how to do vectorized load/store in Adreno GPUs to better utilize the 
bandwidth. 

Original kernel before optimization: 
__kernel void MatrixMatrixAddSimple( const int matrixRows, 
        const int matrixCols, 
        __global float* matrixA, 
        __global float* matrixB, 
        __global float* MatrixSum) 
{ 
 int i = get_global_id(0); 
 int j = get_global_id(1); 
 // Only retrieve 4 bytes from matrixA and matrixB. 
 // Then save 4 bytes to MatrixSum. 
 MatrixSum[i*matrixCols+j] =  
  matrixA[i*matrixCols+j] + matrixB[i*matrixCols+j]; 
} 

Modified kernel: 
__kernel void MatrixMatrixAddOptimized2( const int rows, 
         const int cols, 
         __global float* matrixA, 
         __global float* matrixB, 
         __global float* MatrixSum) 
{ 
 int i = get_global_id(0); 
 int j = get_global_id(1); 
 // Utilize built-in function to calculate index offset 
 int offset = mul24(j, cols); 
 int index = mad24(i, 4, offset); 
 
 // Vectorize to utilization of memory bandwidth for performance gain. 
 // Now it retieves 16 bytes from matrixA and matrixB. 
 // Then save 16 bytes to MatrixSum 
 float4 tmpA = (*((__global float4*)&matrixA[index])); // Alternatively 
vload and vstore can be used in here 
 float4 tmpB = (*((__global float4*)&matrixB[index]));  
 (*((__global float4*)&MatrixSum[index])) = (tmpA+tmpB); 
 // Since ALU is scalar based, no impact on ALU operation. 
} 

The new kernel is doing vectorized load/store using float4. The global work size in the newer 
kernel should be ¼ of the original kernel because of this vectorization.  
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9.1.3  Use image instead of buffer 

This example calculates a dot product for each pair, given 5 million pairs of vectors. The original 
code uses a buffer object, which is modified to use a texture object instead (read_imagef) to 
improve frequent data access. It is a simple example, but the technique can be applied to many 
cases in which buffer object access is not as efficient as texture object access. 

Original kernel before optimization Modified kernel for optimization 

__kernel void DotProduct(__global const 
float4 *a, __global const float4 
*b,__global float *result){// a and b 
contain 5 million vectors each 
// Arrays are stored as linear buffer 
in global memory 
   result[gid] = dot(a[gid], b[gid]); 
} 

 

__kernel void DotProduct(__read_only 
image2d_t c, __read_only image2d_t d, 
__global float *result){ 
// Image c and d are used to hold the data 
instead of linear buffer 
// read_imagef goes through the texture 
engine 
 int2 gid = (get_global_id(0), 
get_global_id(1)); 
 result[gid.y * w + gid.x] = 
dot(read_imagef(c, sampler, gid), 
read_imagef(d, sampler, gid)); 
} 

 

9.2  Epsilon filter 
Epsilon filter is used widely in image processing for the reduction of mosquito noise, which is a 
type of impairment occurring at high frequency region such as edges in images. The filter is 
essentially a nonlinear and point-wise low pass filter with space-varying support, and only the 
pixels with certain threshold are filtered. 

In this implementation, the Epsilon filter is applied only on the intensity (Y) component of YUV 
images, as the noise is mainly visible in there. Also, it is assumed that the Y component is 
consecutively stored (NV12 format), which is separated from the UV component. There are two 
basic steps as illustrated by Figure 9-1.  

 Given a pixel to be filtered, calculate the absolute difference value between the central pixel 
and each pixel in its neighboring 9x9 region. 

 If the absolute difference is below a threshold, the neighboring pixel value is used for 
averaging. Note the threshold usually is a constant predefined in the application.  
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Figure 9-1  Epsilon filter algorithm 

9.2.1  Initial implementation  
This application targets YUV images with resolution of 3264x2448 (width = 3264, height =2448) 
with 8-bit per pixel. The performance numbers reported here are from Snapdragon 810 
(MSM8994, Adreno 430) at performance mode.  

Here are the initial implementation parameters and strategy: 

 Use OpenCL image object instead of buffer 

 Using image over buffer can avoid some boundary check and leverage the L1 cache in 
Adreno GPUs 

 Use CL_R|CL_UNORM_INT8 image format/data type. 

 Single channel as this is for Y component only, and pixels read into SP is normalized into 
[0, 1] by the built-in texture pipe in Adreno GPUs. 

 Each work item produces one output pixel 

 Using 2D kernel and the global work size is set to [3264, 2448] 

In the implementation, each work item needs to access 81 floating point pixel. The performance 
on the Adreno A430 GPU is used as the baseline for further optimization. 

9.2.2  Data pack optimization 
By comparing the amount of computation and data load, it is obvious that this is a memory bound 
use case. Thus, the main optimization should be how to improve the data load efficiency.  

The first thing to note is that, using 32-bit floating (fp32) to represent pixel values is a waste of 
memory. For many image processing algorithms 8-bit or 16-bit data type could be sufficient. 
Since Adreno GPUs have native hardware support for 16-bit float data type, i.e., half or fp16, the 
following optimization options can be applied:  

 Use 16-bit half data type instead of 32-bit float  

 Each work item now accesses 81 half data 

 Use CL_RGBA|CL_UNORM_INT8 image format/data type. 

 Using CL_RGBA to load 4 channels to better utilize the TP bandwidth.  
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 Replace read_imagef with read_imageh. TP converts the data into 16-bit half 
automatically.  

 Each work item  

 Reads three half4 vectors per row 

 Output one processed pixel 

 Number of memory access per output pixel: 3x9=27 (half4) 

 Performance improvement: 1.4x 

 
Figure 9-2  Data pack using 16-bit half (fp16) data type 

9.2.3  Vectorized load/store optimization 
In the previous step, only one pixel is output with so many neighboring pixels loaded. With a few 
extra pixels loaded, more pixels can be filtered as follows: 

 Each work item  

 Reads three half4 vectors per row 

 Output four pixels 

 Number of memory access per output pixel: 3x9/4 = 6.75 (half4) 

 Global work size: (width/4) x height. 

 Loop unrolling for each row 

 Inside each row, sliding window method is used. 
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Figure 9-3  Filtering more pixels per work item 

Figure 9-3 illustrates the basic diagram of how multiple pixels are processed with extra pixels 
loaded. Here are the steps:  

Read center pixel c; 
For row = 1 to 9, do: 
read data p1; 
Perform 1 computation with pixel c; 
read data p2; 
Perform 4 computations with pixel c; 
read data p3; 
Perform 4 computations with pixel c; 
end for 
write results back to pixel c. 

After this step, the performance is improved by 3.4x from the baseline.  

9.2.4  Further increase work load per work item 
One may expect more performance boost by increasing the workload per work item. Here are the 
options:  

 Read one more half4 vector and increase the output pixel number to 8 

 Global work size: width/8 x height 

 Each work item 

 Reads four half4 vectors per row 

 Outputs eight pixels 

 Number of memory access per output pixel: 4x9/8 = 4.5 (half4) 
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Number of memory access per output pixel: 4x9/8 = 4.5 (half4)

 
Figure 9-4  Process 8 pixels per work item 

These changes lead to slight performance improvement by 0.1x. Here are the reasons why it does 
not work well:  

 There is no much changes on cache hit ratio, which is already very good in previous step. 

 More registers are used and less waves, which hurts the parallelism and latency hiding. 

For experimental purpose, one may load even more pixels as follows:  

 Read even more half4 vectors and increase the number of output pixels to 16. 

 Global work size: width/16 x height 

Figure 9-5 shows that each work item does the following:  

 Reads 6 half4 vectors per row 

 Outputs 16 pixels 

 Number of memory access per output pixel: 6x9/16 = 3.375 (half4).  

After these changes, the performance deteriorates from 3.4x to 0.5x of the baseline! Loading 
more pixels into one kernel causes register spilling, which seriously hurt the performance.  

 
Figure 9-5  Process 16 pixels per work item 
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9.2.5  Use local memory optimization 
Local memory has a much shorter latency than global memory as it is on-chip memory. One 
choice is to load the pixels into local memory, and avoid repeatedly loading from global memory. 
In addition to the center pixel to be processed, the surrounding pixels are also required for the 9x9 
filtering and thus loaded into local memory, which is shown in Figure 9-6.  

 
Figure 9-6  Using local memory for Epsilon filtering 

Table 9-1 lists the setup of two cases and their performance. The overall performance is 
considerably better than the original one. However, they do not beat the best number from 
Section 9.3.4. 

Table 9-1  Performance from using local memory 

 Case 1 Case 2 

Workgroup 8x16 8x24 
Local memory size (byte) 10x18x8 =1440 10x26x8 = 2080 
Performance 2.4x 2.8x 

As discussed in Section 7.1.1, use of local memory often requires barrier synchronization inside 
workgroups and it does not necessarily yield better performance than global memory. Instead, it 
may perform worse if there is too much overhead. In this case, global memory could be a better 
choice if it has high cache hit ratio.  



Qualcomm Snapdragon OpenCL General Programming and Optimization  OpenCL optimization case studies 

80-NB295-11 A MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 63 
 

9.2.6  Branch operations optimization 
The Epsilon filter needs to do comparison between pixels as follows:  
 
Cond = fabs(c -p) <= (half4)(T); 
sum += cond ? p : consth0; 
cnt += cond ? consth1 : consth0; 
 

The ternary operator ?: incurs some divergence in hardware as not all fibers in a wave go to the 
same execution branch. The branching operation can be replaced by ALU operations as follows: 

 
Cond = convert_half4(-(fabs(c -p) <= (half4)(T))); 
sum += cond * p; 
cnt += cond; 
 

This optimization is applied on top of the one described in Section 9.2.2 and the performance is 
improved to 5.4x from 3.4x of the baseline! 

The key difference is that the new code is executed in the highly parallelized ALU and all fibers 
in the wave essentially execute the same piece of code, though the variable Cond may have 
different values, while the old one is using some costly hardware logic to handle the divergence. 

9.2.7  Summary  
The optimization steps and their performance numbers are summarized in Table 9-2. Initially, the 
algorithm is memory bounded. By doing data packing and vectorized load, it becomes more ALU 
bounded. In summary, the key optimization for this use case is to load data in an optimal way. A 
lot of memory bound use cases could be accelerated by using similar techniques. 

Table 9-2  Summary of optimizations and performance   

Step Optimizations 
Image 
format 

Data type 
In kernel 

Vector 
processing 

Speedup 

1 Initial GPU implementation CL_R | 
CL_UNORM_INT8 

float  
 
1-pixel/work 
item 
 

 

2 Use half type in kernel CL_R | 
CL_UNORM_INT8 

 
 
 
 
 
 
half 

1.0 X 

3 Data packing  
 
 
 
CL_RGBA | 
CL_UNORM_INT8 

1.4 X 
4 Vectorized processing 

Loop unrolling 
4-pixel/work 
item 
(half4 output) 

3.4 X 

5 More pixels per work item 8-pixel/work 
item 

3.5 X 

6 More pixels per work item 16-pixel/work 
item 

0.5 X 

4-1 Use LM 
(workgroup size: 8x16) 

 
 
 

2.4 X 

4-1-1 Use LM, increase workgroup 
size, workgroup size: 8x24 

2.8 X 
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Step Optimizations 
Image 
format 

Data type 
In kernel 

Vector 
processing 

Speedup 

4-1-2 Remove branching 
operations Use LM, 
workgroup size: 8x24 

4-pixel/work 
item 
 

2.9 X 

4-2 Remove branching 
operations 

5.4 X 

 

The OpenCL performance of Epsilon filter with three different resolutions are shown in Table 9-
3. It shows that the performance gaining factor increases for larger images. For an image of 
3264x2448, 5.4x performance boost is observed, as comparing to 4.3x for an image of 512x512 
using the initial OpenCL code. This is understandable, as there is fixed cost associated with 
kernel execution regardless of workload, and its weight in the overall performance becomes 
lower as the workload is larger.  

Table 9-3  Performance profiled for images with different resolutions 
Image resolution 512x512 1920x1080 3246x2448 

Number of pixels 0.26MP 2MP 8MP 

Device 
(A430) 

GPU initial results 1x 1x 1x 

GPU optimized 4.3x 5.2x 5.4x 

9.3  Sobel filter 
Sobel filter, also called Sobel operator, is used in many image processing and computer vision 
algorithms for edge detection. It uses two 3x3 kernels to combine with the original image to 
approximate the derivative. There are two kernels: one kernel is for horizontal direction and the 
other is for vertical direction, as shown in Figure 9-7.  

 

 
Figure 9-7  Two directional operations in Sobel filter 

9.3.1  Algorithm optimization 
The Sobel filter is a separable filter which can be decomposed as follows:  

 
Figure 9-8  Sobel filter separability 
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Compared with a nonseparable 2D filter, a 2D separable filter can lower the complexity from 
O(n2) to O(n). It is highly desirable to use separable filters instead of nonseparable due to 
2D’s high complexity and computational cost.  

9.3.2  Data pack optimization 
Although computation is reduced considerably for the separable filter, the number of pixel 
required for filtering each point is the same, i.e., 8 neighboring pixels plus the center pixel for this 
3x3 kernel. It is easily seen that this is a memory bound problem. So how to effectively load the 
pixels into GPU is the key for performance. Three options are as illustrated in the following 
figures:  

 
Figure 9-9  Process one pixel per work item: load 3x3 pixels per kernel 

 
Figure 9-10  Process 16x1 pixels: load 18x3 pixels 

 
Figure 9-11  Process 16x2 pixels, load 18x4 pixels 

The following table summarizes the total number of bytes and average bytes required in each 
case. For the 1st case in Figure 9-9, each work item only processes Sobel filtering on one pixel. 
As the number of pixels per work item increases, the amount of data to be loaded is reduced for 
cases shown in Figure 9-10 and Figure 9-11. This often leads to reduction of data traffic from 
global memory to GPU and results in better performance.  

Table 9-4  Amount of data load/store for the three cases 

 One pixel/work item 16x1 pixels/work item 16x2 pixels/work item 

Total input bytes 9 54 72 
Average input bytes 9 3.375 2.25 
Average store bytes 2 2 2 
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9.3.3  Vectorized load/store optimization 
The number of load/store for the cases of 16x1 and 16x2 can be further reduced by using the 
vectorized load store function in OpenCL, such as float4, int4, and char4, etc. Table 9-5 
shows the number of load/store requests for the vectorized cases (assuming the pixel data type is 
8-bit char). 

Table 9-5  Number of loads and stores by using vectorized load/store 

 16x1 Vectorized  16x2 vectorized 

Loads 6/16=1.375 8/32=0.374 
stores 2/16=0.125 4/32=0.125 

A code snippet doing the vectorized load is as follows:  
 
short16 line_a = convert_short16(as_uchar16(*((__global uint4 
*)(inputImage+offset)))); 
 

There are two pixels to be loaded at the boundary as follows:  
 
short2 line_b = convert_short2(*((__global uchar2 *)(inputImage + offset + 
16))); 
 

NOTE: Increases in the number of pixels processed by each work item may cause serious register 
footprint pressure, resulting in register spilling into private memory and performance 
degradation.  

9.3.4  Performance and summary 
After applying the two optimization steps, significant performance boost is observed, as shown in 
Figure 9-12, in which the original (single pixel/work item) on MSM8992 (Adreno 418) is 
normalized to 1. 

 
Figure 9-12  Performance boost by using data pack and vectorized load/store 
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To summarize, here are the key points for this use case optimization.  

 Data packing improves memory access efficiency 

 Vectorized load/store is key to reduce memory traffic 

 Short type is preferred over integer or char type in this case 

In this case, local memory is not used. The data pack and vectorized load/store have minimized 
the overlap of data that can be reused. Therefore, using local memory does not necessarily 
improve the performance.  

There could be other options to boost the performance, for example, using texture over global 
buffer.  

9.4  Summary 
A few examples and code snippet are provided in this chapter to demonstrate the optimization 
rules presented in previous chapters and how the performance has changed. Developers should try 
to follow the steps with real devices. It is advised that not all results can be exactly reproduced 
due to compiler and driver upgrades. But generally, similar performance boost should be 
achieved with these optimization steps. 
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10  Summary 

This document intends to provide a detailed guidance on how to optimize OpenCL programs with 
Adreno GPUs. A good amount of information has been provided to help developers understand 
the OpenCL fundamentals and Adreno architectures, and most importantly, master OpenCL 
optimization techniques.  

OpenCL optimization is often challenging and requires a lot of trial and error. As each vendor 
may have its own best practices of doing the same task, it is important to read through and have 
in-depth understanding of the guide and practices for Adreno GPUs. Many factors that look 
minor could have significant performance impacts. These are unfortunately not easy to tackle 
without hands-on exercise and practices.  

Due to time constraints and other factors, some topics are not covered. Adreno GPUs support a 
lot of extensions that can significantly boost performance and add extra functionalities. For 
instance, recent Adreno GPUs support some proprietary image formats which raw image and 
video data captured from image signal processor (ISP) can be compressed to for direct and 
efficient processing. This could save some manual handling as well as improve bandwidth usage.  

Future releases of this document will include more topics.  
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A  How to enable performance mode 

To enable performance mode, root access is usually required for Android devices(adb root; 
adb remount). Note that these commands need to rerun if the system restarts.  

A.1  Adreno A3x GPU 

A.1.1  CPU settings  
 
/*disabling mpdecision keeps all CPU cores ON*/ 
adb shell stop mpdecision  
/*Set performance mode for all CPU cores. In this case, a dual core CPU*/ 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu1/online" 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu1/cpufreq/scaling_governor" 

A.1.2  GPU settings: 
Disable power scaling policy: 

 Newer targets support the following method to disable power scaling: 
 
"echo performance > /sys/class/kgsl/kgsl-3d0/devfreq/governor" 
 

 Legacy targets support the following method to disable power scaling: 
 
/*Disable power scaling policy for GPU*/ 
adb shell "echo none > /sys/class/kgsl/kgsl-3d0/pwrscale/policy" 
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Disable GPU sleep and force the GPU clocks/bus vote/power rail to always on: 

 Keep clocks on until the idle timeout forces the power rail off. 

 Keep the bus vote on permanently. 

 Keep the graphics power rail on permanently. 

The command sequence for newer targets is: 
 
adb shell “echo 1 > /sys/class/kgsl/kgsl-3d0/force_clk_on” 
adb shell “echo 1 > /sys/class/kgsl/kgsl-3d0/force_bus_on” 
adb shell “echo 1 > /sys/class/kgsl/kgsl-3d0/force_rail_on” 
 

The command sequence for legacy targets is: 
 
/*Disable GPU from going into sleep*/ 
adb shell "echo 0 > /sys/class/kgsl/kgsl-3d0/pwrnap" 
/*Or Set a very high timer value for GPU sleep interval*/ 
adb shell "echo 10000000 > /sys/class/kgsl/kgsl-3d0/idle_timer" 
 

A.2  Adreno A4x GPU and Adreno A5x GPU 
 
adb shell "cat /sys/class/kgsl/kgsl-3d0/gpuclk" 
adb shell "echo 0 > /sys/class/kgsl/kgsl-3d0/min_pwrlevel" 
adb shell "echo performance >/sys/class/kgsl/kgsl-3d0/devfreq/governor" 
adb shell "cd /sys/class/devfreq/qcom,cpubw.* && echo performance > 
governor" 
adb shell "echo performance >/sys/class/devfreq/qcom,cpubw.29/governor" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu0/online" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu1/online" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu2/online" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu3/online" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu4/online" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu5/online" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu6/online" 
adb shell "echo 1 > /sys/devices/system/cpu/cpu7/online" 
adb shell stop thermald 
adb shell stop mpdecision 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor" 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu1/cpufreq/scaling_governor" 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu2/cpufreq/scaling_governor" 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu3/cpufreq/scaling_governor" 
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adb shell "echo performance > 
/sys/devices/system/cpu/cpu4/cpufreq/scaling_governor" 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu5/cpufreq/scaling_governor" 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu6/cpufreq/scaling_governor" 
adb shell "echo performance > 
/sys/devices/system/cpu/cpu7/cpufreq/scaling_governor" 
adb shell "cat /sys/class/kgsl/kgsl-3d0/gpuclk" 
adb shell "echo 1 > /sys/class/kgsl/kgsl-3d0/force_clk_on" 
adb shell "echo 1000000 > /sys/class/kgsl/kgsl-3d0/idle_timer" 
 

For GPU only: 
 
adb shell echo 0 > /sys/class/kgsl/kgsl-3d0/min_pwrlevel 
adb shell echo 0 > /sys/class/kgsl/kgsl-3d0/max_pwrlevel 
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B  References 

B.1  Related documents 
 

Title Number 

Qualcomm Technologies, Inc. 
Introduction to Adreno Profiler for OpenCL 80-ND791-5 
CL-GL Interop Usage Guidelines 80-NK985-1 

Standards 
The OpenCL Specification The Khronos Group Inc. 

Versions 1.1, 1.2, and 2.0 
http://www.khronos.org/opencl/ 

Resources 
OpenCL Programming Guide, Addison-Wesley Publishing Company 
Chapter 7, “Display Lists” 
Chapter 8, “Drawing Pixels, Bitmaps, Fonts, and Images” 

http://ube.ege.edu.tr/~ozturk/grap
hics/opengl_book/ch7.htm  
and  
http://ube.ege.edu.tr/~ozturk/grap
hics/opengl_book/ch8.htm  

B.2  Acronyms and terms 
 

Acronym or term Definition 

ALU  arithmetic logic unit 
ANB  Android native buffer 
EFU  elementary function unit 
GPR  general purpose register 
IOT  internet of things 
NDK  native development kit 
OS  operating system-on-chip 
RAM  random-access memory 
SDK  software development kit 
SOC  system-on-chip 
SP  streaming or shader processor 
SVM  shared virtual memory 
TP  texture processor 
UCHE  unified L2 cache 
UI  user interface 

 

http://www.khronos.org/opencl/
http://ube.ege.edu.tr/%7Eozturk/graphics/opengl_book/ch7.htm
http://ube.ege.edu.tr/%7Eozturk/graphics/opengl_book/ch7.htm
http://ube.ege.edu.tr/%7Eozturk/graphics/opengl_book/ch8.htm
http://ube.ege.edu.tr/%7Eozturk/graphics/opengl_book/ch8.htm

	Qualcomm® Snapdragon™ Mobile Platform OpenCL General Programming and Optimization
	Revision history
	Contents
	Figures
	Tables
	1  Introduction
	1.1  Purpose
	1.2  Conventions
	1.3  Technical assistance

	2  Introduction to OpenCL
	2.1  OpenCL background and overview
	2.2  OpenCL on mobile
	2.3  OpenCL standard
	2.3.1  OpenCL API functions 
	2.3.2  OpenCL C language
	2.3.3  OpenCL versions and profiles

	2.4  OpenCL portability and backward compatibility
	2.4.1  Program portability
	2.4.2  Performance portability
	2.4.3  Backward compatibility 


	3  OpenCL on Snapdragon
	3.1  OpenCL on Snapdragon
	3.2  Adreno GPU architecture
	3.2.1  Adreno high-level architecture for OpenCL
	3.2.2  Waves and fibers
	3.2.3  Latency hiding 
	3.2.4  Workgroup assignment

	3.3  Adreno A3x, A4x, and A5x differences on OpenCL
	3.3.1  L2 cache 
	3.3.2  Local memory

	3.4  Context switching between graphics and compute workload
	3.4.1  Context switch
	3.4.2  Limit kernel/workgroup execution time on GPU

	3.5  OpenCL standard related improvement
	3.6  OpenCL extensions

	4  Adreno OpenCL application development
	4.1  OpenCL application development on Android
	4.2  Debugging tools
	4.3  Snapdragon Profiler
	4.4  Performance profiling 
	4.4.1  CPU timer
	4.4.2  GPU timer
	4.4.3  GPU timer vs. CPU timer
	4.4.4  Performance mode
	4.4.5  GPU frequency controls


	5  Overview of performance optimizations
	5.1  Performance portability
	5.2  High-level view of optimization 
	5.3  Initial evaluation for OpenCL porting
	5.4  Port CPU code to OpenCL GPU
	5.5  Parallelize GPU and CPU workloads
	5.6  Bottleneck analysis
	5.6.1  Identify bottlenecks 
	5.6.2  Resolve bottlenecks 

	5.7  API level performance optimization
	5.7.1  Proper arrangement of API function calls 
	5.7.2  Use event-driven pipeline
	5.7.3  Kernel loading and building
	5.7.4  Use in-order command queues


	6  Workgroup size performance optimization
	6.1  Obtain the maximum workgroup size
	6.2  Required and preferred workgroup size
	6.3  Factors affecting the maximum workgroup size
	6.4  Kernels without barrier 
	6.5  Workgroup size tuning
	6.5.1  Avoid using default workgroup size
	6.5.2  Large workgroup size, better performance?
	6.5.3  Fixed vs. dynamic workgroup size 
	6.5.4  One vs. two vs. three-dimensional (1D/2D/3D) workgroup

	6.6  Other topics on workgroup size
	6.6.1  Global work size and padding
	6.6.2  Brute force search
	6.6.3  Avoid uneven workload across workgroups 
	6.6.4  Workgroup synchronization


	7  Memory performance optimization
	7.1  OpenCL memories in Adreno GPUs
	7.1.1  Local memory
	7.1.2  Constant memory
	7.1.3  Private memory
	7.1.4  Global memory
	7.1.4.1  Buffer
	7.1.4.2  Image
	7.1.4.3  Using image object vs. buffer object
	7.1.4.4  Use of both Image and buffer objects
	7.1.4.5  Global memory vs. local memory


	7.2  Optimal memory load/store
	7.2.1  Coalesced memory load/store
	7.2.2  Vectorized load/store
	7.2.3  Optimal data type
	7.2.4  16-bit floating (half) vs. 32-bit floating

	7.3  Atomic functions
	7.4  Zero copy
	7.4.1  Use map over copy
	7.4.2  Avoid memory copy for objects allocated not by OpenCL
	7.4.2.1  ION memory extensions
	7.4.2.2  QTI Android native buffer (ANB) extension
	7.4.2.3  Using standard EGL extensions


	7.5  Improve cache usage
	7.6  CPU cache operations
	7.7  Use of SVM
	7.8  Best practices to reduce power/energy consumption

	8  Kernel performance optimization
	8.1  Kernel fusion or splitting
	8.2  Compiler options
	8.3  Conformant vs. fast vs. vs. native math functions
	8.4  Loop unrolling
	8.5  Avoid branch divergence
	8.6  Handle image boundaries
	8.7  32-bit vs. 64-bit GPU memory access
	8.8  Avoid use of size_t
	8.9  Generic memory address space
	8.10  Miscellaneous 

	9  OpenCL optimization case studies
	9.1  Application sample code
	9.1.1  Improve algorithm
	9.1.2  Vectorized load/store
	9.1.3  Use image instead of buffer

	9.2  Epsilon filter
	9.2.1  Initial implementation 
	9.2.2  Data pack optimization
	9.2.3  Vectorized load/store optimization
	9.2.4  Further increase work load per work item
	9.2.5  Use local memory optimization
	9.2.6  Branch operations optimization
	9.2.7  Summary 

	9.3  Sobel filter
	9.3.1  Algorithm optimization
	9.3.2  Data pack optimization
	9.3.3  Vectorized load/store optimization
	9.3.4  Performance and summary

	9.4  Summary

	10  Summary
	A  How to enable performance mode
	A.1  Adreno A3x GPU
	A.1.1  CPU settings 
	A.1.2  GPU settings:

	A.2  Adreno A4x GPU and Adreno A5x GPU

	B  References
	B.1  Related documents
	B.2  Acronyms and terms


