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ABSTRACT

GPUs can offer very high computational power and high energy efficiency for some applications.
Their programming model gives the illusion of independent threads while the GPU internally
packs together threads into groups often called warps and executes them on a SIMD unit. This
improves power and area efficiency by avoiding the need to fetch, decode and schedule an in-
struction once per executed operation. Instead fetching, decoding and scheduling of instructions
can be done on a per warp level with each scheduled instruction executing in multiple threads.
It is normally implemented using spatial SIMD units that execute each SIMD bundle on a fixed
number of physical functional units (FU), each supplied with different data, but the same con-
trol vector. If not all threads share the same control flow spatial SIMD units can only be utilized
partially. In this paper we present a GPU with temporal SIMD (TSIMD), where each functional
unit uses its control vector value for multiple cycles to execute a single instruction on a flexi-
ble number of data values. TSIMD allows to adjust the group size at runtime and skip unused
SIMD slots, thus prevents wasting FU cycles when not all threads within warp are on the same
control flow. During the time a TSIMD unit is active, the frontend is free to schedule new in-
structions to a different TSIMD unit, thus being able to reach the same high peak performance
as conventional, spatial SIMD GPUs. In this paper we explain DART, a GPU architecture exploit-
ing TSIMD and the differences to a conventional GPU and show simulation results, for synthetic
microbenchmarks, using a modified version of GPGPU-Sim that is able to simulate DART GPUs
with TSIMD.
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1 Introduction and Related Work

During the last years GPUs have evolved from 3D graphic accelerators to devices able to do
general purpose computing at very high throughputs at a high energy and area efficiency.
GPUs capable of general purpose GPU computing (GPGPUs) are now become common
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even in SoCs intended for mobile devices. They are programmed using a single program
multiple data (SPMD) programming model. While this programming model gives the pro-
grammer the illusion of thousands of independent threads, the GPU internally groups to-
gether threads into groups (called warps in NVIDIA termionology) and executes them on a
SIMD unit. But at the same time this imposes the requirement of running all threads within
one warp in lockstep and executing all branch directions and masking out all threads that do
not follow the currently executing direction. During the execution the masked out functional
units (FUs) can not be used.

The grouping of threads into warps allows the GPU to fetch instruction once per warp
instead of once per thread. This SIMD execution provides high efficiency and high peak
performance to GPUs but at the same time it also makes execution of code with divergent
branches less efficient. Efficient execution of branch divergent code in GPUs has been an
active research area.[BCD12][NSL+11] However these techniques only work well with spe-
cific branch patterns. Temporal SIMD is a new and potentially more general technique for
more efficient execution of SPMD code. Temporal SIMD was first mentioned by Keckler
at al.[KDK+11] without providing any details of the techniques. At roughly the same time
NVidia filled a patent[Kra11] on the technique. This patent was recently published by the
US patent office and provides a more detailed description of the technique. However, the
performance characteristics and architectural changes required for TSIMD have not been
analysed in detail. This paper describes DART, a GPU architecture build around TSIMD
execution units and enables a first look at the performance characteristics of such an archi-
tecture. DART stands for Decoupled ARchitecture for TSIMT. In DART the execution units
and register files together with some additional logic form lanes that execute the instruc-
tions of the threads in a self-managed way, decoupling the execution of instruction from the
fetching and decoding. With this decoupling it becomes possible to adjust the performance
of the fetch and decode frontend and the execution lanes to the application and the level of
divergence present in the application.

2 Proposed Architecture and Experimental Setup

Figure 1 shows the basic idea of the modeled architecture. The execution is handled by lanes
formed from a register file, an execution unit and an instruction register. The instruction
register stores the control vector at the execution unit and automatically cycles through all
active threads within the warp. After all threads of the instruction have been sent to the exe-
cution unit the next instruction can be received from the frontend. However instructions are
still fetched, scheduled and decoded in the front end on a per-warp level. While one of these
lanes is busy with the self-managed execution of the SIMD instruction, the frontend is able
to issue instructions to one of the other execution units. If all threads in all warps are active,
the frontend needs to supply one instruction per 32 executed operations. If a smaller number
of threads in the warp is active, due to divergence, the lane will sooner be able to accept a
new instruction from the frontend. DARTs capability to handle divergent workloads stems
from the flexiblity of the TSIMD lanes and the more powerful frontends ability to supply
instructions at a higher rate if needed.

We modified GPGPU-Sim 3.1.0[BYF+09] to simulate a DART GPU. As a baseline we con-
figured a GPU with a single core with NVidia GT200 based parameters. GT200 based GPUs
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Figure 1: Diagram that shows the basic architectural idea of a TSIMD GPU core with multiple
execution units

use SIMD units with 8 execution units. Execution of a warp is always done over 4 cycles,
irrespective of the number of enabled threads per warp. The GT200 frontend can schedule
new instructions every 4th cycle. The DART frontend is able schedule one new instruction
every cycle if needed. It is thus capable of a up to 4x higher instruction fetch and decode
throughput. The parameters of our simulated TSIMD are also based on a single GT200 core,
but this time with 8 TSIMD lanes. Theoretical peak IPC for both configurations is 8.0.

3 Results

We developed a microbenchmark for testing the performance at different levels of diver-
gence. To test different levels of divergence we can configure this microbenchmarks control
flow to branch into 1 to 32 divergent flows per warp. Figure 2 shows the result of our mi-
crobenchmark runs. With all threads on the same control flow conventional GPUs and DART
are showing similar performance. But even with just two to three different control streams
conventional GPU performance shows a steep drop while DART is still able to archive al-
most peak IPC. The DART GPU is able to main a approximately 4x advantage over conven-
tional GPUs on highly divergent workloads, which reflects increased frontend performance.

4 Conclusion

DART is an interesting and promising architecture for future GPUs. The ratio of instruc-
tion fetch and decode to execution units in DART GPUs can be adjusted to provide near
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Figure 2: DART IPC vs. Conventional GPU IPC for different levels of divergence

optimal performance with divergent workloads. However additional research is needed to
fully understand its performance characteristics. It might enable the effective use of GPUs
for applications with a less regular control flow.
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