

Performance Portability for Embedded GPUs

Simon McIntosh-Smith simonm s.bris.ac.uk Head of Microelectronic Research University of Istol, UK

GPUcompute on Embedded GPUs

Simon McIntosh-Smith simonm@cs.bris.ac.uk **Head of Microelectronics Research University of Bristol, UK**

Keinstein Kei

2011 ITRS - Functions/chip and Chip Size

Kerne Programmable embedded GPUs go mainstream in 2014

- Lots of significant announcements recently (at CES etc)
 - Imagination Series 6XT (Rogue) GPU
 - ARM Mali T760
 - Qualcomm Adreno 420
 - AMD Radeon E6XXX (576 GFLOPS), Kaveri
 - Intel IRIS
 - Vivante GC7000 series
 - Nvidia Tegra K1
 - Other vendors too: Broadcom, ...
- 2014 is the year that OpenCL programmable embedded GPUs will become ubiquitous

Keritectural trends

- Integrated CPU/GPU with shared virtual memory and cache coherency
 - SVM is a key new feature of OpenCL 2.0
- Efficiency improvements in overheads for launching tasks/kernels
 - Promotes finer-grained heterogeneous parallel programs
 - Supported by OpenCL 2.0 subgroups and nested (dynamic) parallelism
 - Heterogeneous Systems Architecture (HSA) etc

Where are we now?

- Usefully (OpenCL) programmable GPUs just starting to become available
- OpenCL 2.0, SPIR and HSA will enable much greater efficiency in the exploitation of heterogeneous many-core *integrated* systems
- Embedded GPUs having peak performance in the tens to hundreds of GFLOPS (single precision)
- Memory bandwidth of O(10) Gbytes/s

• But...

- Few eGPUs come with easy to use, familiar programming environments or even operating systems for HPC
 - Most are Android
 - Only a few provide Linux
- Many of their architectures are still in the GPU computing "adolescence" stage

KGPU computing evolution

Increasing architectural simplicity

"Adulthood"

Fully programmable, easiest to use and achieve a high fraction of potential performance

"Adolescence"

"Infancy"

First generation programmable, slightly easier to use, delivers small fraction of potential performance

Graphics specific, only GPGPU option is to disguise a computation as a graphics problem

ncreasing micro-architectural cost

K E.g. Imagination Series 6 "Rogue"

Sources:

http://anandtech.com/show/5364/ powervr-series-6-rogue-gpusreleased-to-licensing

http://withimagination.imgtec.com/ index.php/powervr/powervr-roguedesigning-an-optimal-architecture-forgraphics-and-gpu-compute

http://withimagination.imgtec.com/ index.php/powervr/building-efficientmultimedia-architectures-consumerelectronics-mobile-computing

We Dev platforms are hard to find...

ARM Mali-T604 (all Samsung Exynos 5250):

- Arndale development board
- Samsung Chromebook
- Google/Samsung Nexus 10 tablet

Qualcomm Adreno 320 or 330:

 Sony Xperia Z, Xperia ZL, Xperia Tablet Z, Xperia ZR, Xperia Z1 and Xperia Z Ultra smartphones

Imagination PowerVR Series 5 (SGX544MP3):

- Hardkernel ODROID-XU development board
- Samsung Galaxy S4 smartphone

Imagination PowerVR Series 6 ("Rogue"):

 Articles online claim tablets based on MediaTek's new quad-core MT8135 SoC will be appearing imminently

Keaningful comparisons still difficult to produce

OpenCL Code sources: Adreno SDK and <u>http://developer.sonymobile.com/knowledge-base/tutorials</u> /android_tutorial/boost-the-performance-of-your-android-app-with-opencl/

11

Version OpenCL ES results from SiSoft

Version OpenCL ES results from SiSoft

Version OpenCL ES results from SiSoft

SiSoft's OpenCL ES 2014 benchmark conclusion:

"The good news is that the OpenCL run-time works well for all devices, with fast transfers comparable to SIMD optimised transfers (internal copy). The bad news is that upload/ download is diabolically slow and here zerocopy / HSA (Heterogeneous System Architecture) is badly needed to reduce bandwidth pressure."

CompuBench OpenCL results

Only 2 platforms listed:

- Google Nexus 10 (Android 4.2.2)
 - GPU: ARM Mali T604
- Sony Xperia Z
 - GPU: Qualcomm Adreno 320
- Source:
 - <u>http://compubench.com/result.jsp</u>
 - Uncheck "Desktop" and "Notebook" on the right

CompuBench OpenCL results

Kerner OpenGL ES 3.0 on iPad Air

Number of particles in 2D N-body physics simulation

From http://ciechanowski.me/blog/2014/01/05/exploring_gpgpu_on_ios/

₭ 3DMark results from Tom's Hardware

K GFXBench results from Tom's Hardware

K Conclusions

- Still very early days for GPU computing on embedded GPUs
- But it's finally starting to arrive!
- OpenGL ES already quite common
- OpenCL (ES) starting to appear
- Renderscript seems to be lagging
- Availability of dev. kits proving a problem

2014 looks to be the breakout year for fast, easy to use, fully (OpenCL) programmable embedded GPUs!

www.cs.bris.ac.uk/Research/Micro

21