Low-Power Parallel Processing on GPUs Looking Back (and Looking Forward)

Ben Juurlink

TU Berlin

LPGPU Factsheet

Contract number:	288653			
Project coordinator:	Ben Juurlink, TU Berlin			
EU project officer:	Markus Korn			
Community contribution:	€ 2,820,000			
Duration:	1 September 2011 – 31 October 2014			
Project website:	http://lpgpu.org			
Consortium partners (beneficiaries):	Codeplay ®			
Geome	rics Figamelel, com			
Think	Silicon UPPSALA UNIVERSITET			

Agenda

- Intro
 - What?
 - Why?
 - How?
- LPGPU power simulation framework
- Video decoding on GPUs
- TSIMD GPU architecture
- Conclusions & outlook

What? – Why? – How?

- What is the problem?
 - GPUs not flexible enough to efficiently execute appealing applications
 - They consume too much power
 - There's little / no tool support for estimating and reducing power

Src: notebookcheck.com

Src: bottlerocketapps.com

What? – Why? – How?

- Why is this a problem for European industry?
 - Graphics key software industry in Europe
 - Mobile devices now dominant form factor for computing worldwide
 - European companies lead design of mobile phone CPUs and GPUs, and are world leaders in video-games technology
 - Companies need to make large investments in R&D for graphics; vital that they have reliable information

What? – Why? – How? LPGPU Approach

- How does the LPGPU project try to solve these problems?
 - By porting apps to & developing apps for GPUs
 - By developing architectural techniques to reduce power consumption
 - By developing toolset to estimate and reduce power consumption

What? – Why? – How? LPGPU Approach

- How does the LPGPU project try to solve these problems?
 - By porting apps to & developing apps for GPUs
 - By developing architectural techniques to reduce power consumption
 - By developing toolset to estimate and reduce power consumption

LGPU Power Simulation Framework Objectives and Achievements

Objectives:

- To estimate power of state-of-the-art and emerging games and other applications on various GPU architectures
- To evaluate architectural and programming optimizations proposed in the LPGPU project
- Limitations of current approaches
 - Measurement based power models
 - Cannot explore design space

Achievements:

- Developed first GPU power simulator
- Built custom measurement setup to validate simulator results
- Estimated and measured power of state-of-the-art applications
- Used for performance and power trade-offs evaluation

LPGPU Power Simulation Framework High-Level Overview

- Key components
 - GPGPU-Sim performance simulator: extracts activity factors
 - GPGPU-Pow power model: substantially modified McPAT with power models of many GPU components
 - Integrated modified GPGPU-Sim and GPGPU-Pow

LPGPU Power Simulation Framework Power Modeling of GPU Components

- Power models for GPU components added to McPAT:
 - Warp control unit (Warp status table, Instruction buffers, Reconvergence stacks, Scoreboarding logic, Instruction decoder logic, Schedulers)
 - GPU style register file
 - Execution units (INT, FP32, SFU)
 - Load-store unit (Coalescer, Bank conflict checker, AGU array, Per-core constant cache slice, Shared memory, L2 cache)
 - GDDR
 - Analytical and measurement-based power modeling of GPU components:
 - CACTI for regular components such as caches
 - Measurement-based models for irregular components such as FUs

Warp Control Unit Warp Fetch Schedule Logic Schedule Logic

High level overview of warp control unit

LPGPU Power Simulation Framework GPU Power Consumption Measurements

- Custom GPU measurement testbed
- Used for validation of power simulator and empirical power modeling
- Key features
 - Direct measurement of GPU power consumption
 - Uses special PCIe riser card and PCIe power cables to measure all card power supplies
 - High sampling speed (31.5 KHz) and accuracy (±3%)

LPGPU Power Simulation Framework Validation: Simulated vs Measured Power for GTX580

Average relative error is 10.8%

LPGPU Power Simulation Framework Conclusions

- GPUSimPow first and most accurate power simulation framework for GPUs
 - First presented @ ISPASS (April 2013)
 - GPUWattch presented @ ISCA (June 2013)
 - developed independently
 - similar in spirit
 - own measurement show GPUSimPow more accurate
- Downloadable from <u>www.aes.tu-berlin.de/gpusimpow</u>
- Current and future activities:
 - Measuring activity
 - Continuous improvements to accuracy
 - Power model for MMU
 - More accurate modeling of process scaling
 - Support for 3D stacked DRAM

Video Decoding on GPUs Motivation

- When LPGPU project started
 - H.264 most recent video codec
 - GPU deployed for several application domains
- Research question: Can GPUs be deployed efficiently for highly irregular applications such as video codecs?
- Which kernels to offload to GPU?

Kernel	entropy decoding	inverse transform	intra- prediction	motion compensation	deblocking filter
Parallelism	low	high	low	high	medium
Divergence	high	low	high	medium	high

> Offload inverse transform and motion compensation to GPUs

Video Decoding on GPUs Offloading Inverse Transform

- Opportunity: Video sequences contain many blocks consisting of zero coefficients only
 - Corresponding computations can be skipped
- Challenge: branch divergence due to different block sizes
- Solution: compact and separate

Video Decoding on GPUs Inverse Transform Kernel-Level Speedup

- Over 25x speedup for both 4x4 and 8x8 inverse transform
- Performance scales well on NVIDIA Fermi GPUs:
 - GT430 \rightarrow GTS450 \rightarrow GTX560Ti: 2 \rightarrow 4 \rightarrow 8 SMs
- Details in paper:
 - B. Wang, M. Alvarez-Mesa, C. Chi, and B. Juurlink, "An Optimized Parallel IDCT on Graphics Processing Units", Proc. Euro-Par Workshops 2012.

Video Decoding on GPUs Offloading Motion Compensation (MC)

- Motion compensation main kernel in blockbased video codecs
- Implementation challenges:

17

many possible partition schemes:

many interpolation modes:

Video Decoding on GPUs Multistage implementation: Reduced Divergence

- Baseline:
 - 16 computation modes
 - Per mode implementation
 - Result in divergence!
 - Pseudo code:

- Multistage implementation:
 - Each mode consists of max. 6 stages
 - Some stages can be shared between modes
 - Divergence reduced

Video Decoding on GPUs Motion Compensation Results

Synthetic MVs, 1080p, on NVIDIA Maxwell GTX 750 Ti

Video Decoding on GPUs Application-Level Performance

- Speedup at kernel level (2x), but not at application-level
- Causes:
 - Motion compensation not only kernel
 - Overhead:
 - Memory copy
 - OpenCL runtime

Video Decoding on GPUs Conclusions

- Video Decoding on GPUs was and remains a challenge
 - Different architecture that keeps the benefits of GPUs while reducing their disadvantages better solution
- "Parallel H.264/AVC Motion Compensation for GPUs using OpenCL", accepted by IEEE TCSVT
- H.264 OpenCL decoder downloadable from:
 - http://www.aes.tu-berlin.de/menue/research/projects/high_performance_video_coding
- Current and future work:
 - Parallelizing HEVC in-loop filter using OpenCL
 - Offload HEVC motion compensation onto GPUs

Temporal SIMT (DART) Motivation

 As shown, due to branch divergence video codecs difficult to implement efficiently on SIMD-GPUs

- SIMD-GPUs power efficient because instruction frontend (fetching, decoding, ...) shared between several warps
- Motivates different approach called Temporal SIMT
 - Our instantiation called Decoupled ARchitecture using Temporal simt (DART)

Temporal SIMT (DART) Basic Idea

Spatial SIMT

Temporal SIMT

W ₀	W ₁	W ₂	W ₃
W ₀	W ₁	W ₂	W ₇
W ₄	W ₅	W ₆	W ₇
	W ₅	W ₆	
	W ₅		
	W ₅		

- Requires way to skip operations
- Next no-NOP in warp identified in instruction stream
- Fig illustrates filled pipeline
- S-SIMT and T-SIMT require same amount of resources

TIME

Temporal SIMT (DART) There's More to It Than Meets the Eye

- Load balancing issues in some benchmarks.
- To solve, needed to improve
 - register allocation
 - resource management
 - instruction scheduling
- Included and improved scalarization
 - Much easier in T-SIMT than in conventional S-SIMT
- For some benchmarks T-SIMT better; for others S-SIMT
 - Developed Spatial-Temporal (ST-)DART

(a) DG_0 benchmark on unoptimized DART

(b) DG_0 benchmark on optimized DART

Temporal SIMT (DART) Experimental Results

- LPGPU MC_1 and VIS_0 Kernels show EDP improvement of ~50%
- Average EDP Improvement close to 25%

Temporal SIMT (DART) Conclusions

- NVidia patent only provides rough description of Temporal SIMT
- We are first to provide actual implementation
- Discovery: there's much more to it than meets the eye
- Were able to obtain improvements compared to conventional SIMT but required substantial R&D

LPGPU Conclusions

- Many more achievements in LPGPU than can be presented in 20-25 minutes
- This talk focused on achievements led by TU Berlin
- For other achievements, come see our poster in the European projects poster session
- Current and future work
 - Power simulator
 - measure activity more accurately
 - Video decoding on GPUs
 - H.265 / HEVC / MPEG-H
 - DART architecture
 - finish huge design space exploration

Thank You!

- The audience for listening
- The European Union for buying lunch
- My girlfriend for her patience
- My team
- And all others that contributed some{time, where, how}
- Questions?

Backup slides

LPGPU Power Simulation Framework GPUSimPow-GPUWattch Comparison

- GPGPU-Sim average relative error 10.8%
- GPUWattch average relative error 20.5%
- GPUSimPow follows measured power more closely

LPGPU Power Simulation Framework GPU Components Power Modeling Approach

- Mixture of analytical and measurement based models
 - CACTI for regular components like caches

LPGPU Power Simulation Framework GPU Components Power Modeling Approach

- Measurement based models for irregular components like FU
 - Micro-benchmarks to stress the component
 - Measure power consumed

Example of FU power modeling

- 12 SMs @1.34GHz consume 4.6W on GT240
- Energy per operation is 37.9 pJ

