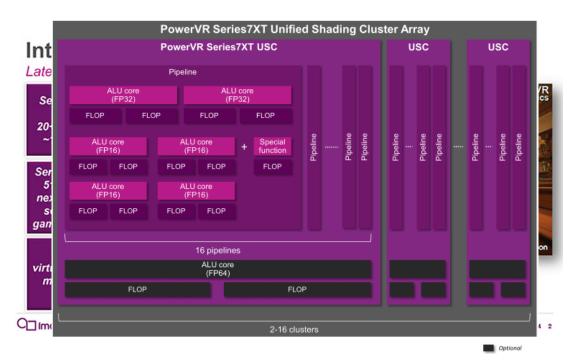


Low power GPU computing The state of the union

Simon McIntosh-Smith simonm@cs.bris.ac.uk Head of Microelectronics Research University of Bristol, UK

PEGPUM, HiPEAC Jan 2015

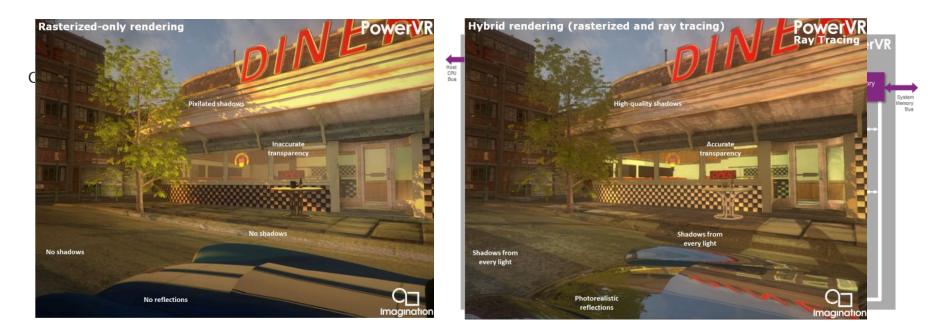
Considerable progress


Embedded, programmable, low-power GPUs have enjoyed a tremendous rate of progress in the last 12 months:

- Lots of new hardware and software products increasing in maturity
- Rapidly expanding ecosystems
- Increasing deployment into the mainstream

Progress in LPGPU hardware

Imagination Technologies now has 64-bit MIPS cores and 64-bit floating point capable PowerVR GPUs up to 1.5 TFLOP/s (single precision) [1,2]



Sources:

[1] http://www.anandtech.com/show/8457/mips-strikes-back-64bit-warrior-i6400-architecture-arrives/4 [2] http://www.anandtech.com/show/8706/imagination-announces-powervr-series7-gpus-series7xt-series7xe

Progress in LPGPU hardware

Embedded GPUs extend to new application areas such as ray tracing [1] and video [2]

Sources:

[1] http://www.anandtech.com/show/7870/imagination-announces-powervr-wizard-gpu-family-rogue-learns-ray-tracing [2] http://www.tomshardware.com/news/arm-mali-gpus-video-display,27961.html

Progress in LPGPU hardware

Embedded GPUs becoming compute monsters; Nvidia's Tegra X1 integrates eight 64-bit ARM cores (4+4 in big.LITTLE configuration), a GPU capable of 0.5 TFLOP/s single precision and up to 25.6 GBytes/s of memory bandwidth for ~10W [1]

TEGRA X1 CPU CONFIGURATION

4 HIGH PERFORMANCE A57 BIG CORES

2MB L2 cache

48KB L1 instruction cache

32KB L1 data cache

4 HIGH EFFICIENCY A53 LITTLE CORES

512KB L2 cache 32KB L1 instruction cache 32KB L1 data cache

	P of	-	1000		
Discourses the	manan	and an and			
61					18 1
1 1 1		CONTRACTOR .			
BIL -					Î
(####					-
T		Contraction of the			
		101	MERCE		
			MERE		
incell *			No. of Lot of Lo	and It	
15 1				- 100	
-					
1000					

Sources: [1] http://www.anandtech.com/show/8811/nvidia-tegra-x1-preview

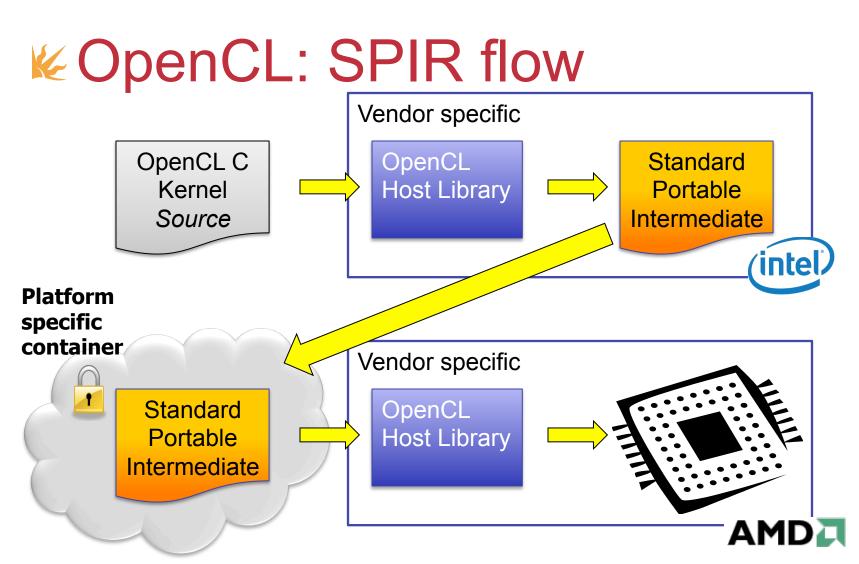
Progress in software

Significant progress in software for embedded GPUs:

- Standards such as OpenCL 2.0 and SPIR
- Increasing software ecosystem
- LPGPU applications emerging (HDR etc.)
- Continued innovation in programming languages – Apple's Metal / OpenGL-next

Progress in software

OpenCL 2.0 & SPIR enable new tools for developers:


- <u>OpenCL 2.0</u> adds significant new features that benefit embedded GPUs [1]:
 - Shared virtual memory (SVM) between CPU and GPU
 - Nested parallelism (device can enqueue kernels)
 - Built-in functions for reductions, broadcasts ...
- <u>SPIR 1.2</u> radically lowers the barrier to entry to the OpenCL ecosystem [2]:
 - Can generate SPIR on one platform and use it on another
 - Can ship applications in portable binary format rather than as human readable kernel source code

Sources: [1] https://www.khronos.org/opencl/ [2] https://www.khronos.org/spir

ISV ships kernels in SPIR form

User runs application on platform of their choice
University of
BRISTOL

Progress in software

OpenCL SPIR enables the creation of new tools for developers:

OpenCL

- Developed at the University of Bristol
- <u>https://github.com/jrprice/Oclgrind/wiki</u>

KOclgrind

University of

- Simulates OpenCL kernels executing on a virtual OpenCL device
- Built on an interpreter for SPIR
- Architecture-agnostic simulation
- Plugin interface for <u>extensibility</u>
- Has found bugs in substantial codes: Parboil, CloverLeaf, ViennaCL etc
- Extended by Codeplay to profile memory accesses
- <u>http://www.many-core.group.cam.ac.uk/ukmac2014/</u> <u>UKMAC2014_07_Price.pdf</u>

https://github.com/jrprice/Oclgrind/wiki

LPGPU applications emerging

As programmable GPUs start shipping in products, **applications** that use them are starting to appear, e.g.

- Computational photography pipelines (HDR etc)
- Image manipulation applications
- Deep learning / artificial neural networks
- Automotive
- Games!

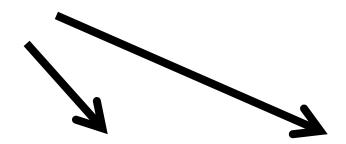
Kean HDR pipeline for LPGPUs

The University of Bristol has developed a high dynamic range computational photography pipeline for OpenCL devices:

- Combines multiple images with a local or global tone mapping operator to enhance detail in areas of the image at the extremes of the exposure
- Achieves 30fps for 1920x1080 images on an ARM Mali T604 GPU for a Reinhard Global TMO
- To appear in <u>GPU Pro 6: Advanced Rendering</u> <u>Techniques</u>, Wolfgang Engel (ed.), March 2015.
- <u>https://github.com/amirchohan/HDR</u>

Ket HDR image processing

(a) - 4 stops



(b) -2 stops

(d) +4 stops

(b) Local TMO

Kearting Automative / deep learning

Nvidia's making a lot of noise about LPGPUs for automotive and deep learning

Keartive / deep learning

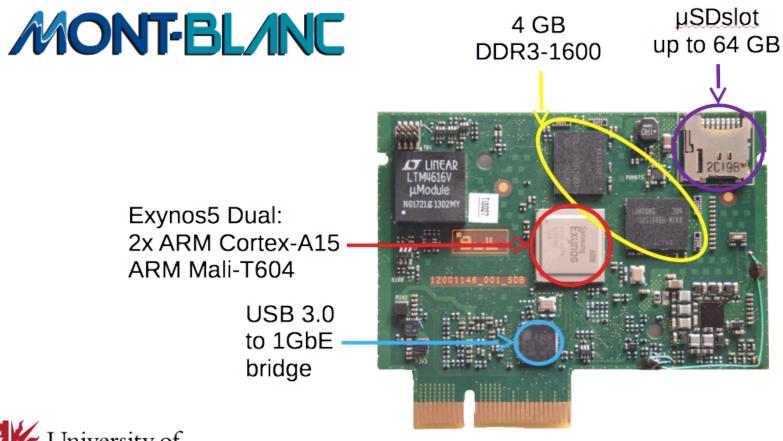
Nvidia's making a lot of noise about LPGPUs for automotive and deep learning

SELF-	PARKING PIPI	ELINE	
PARKING SIMULATOR Image: Scene Configurator Image: Scene Renderer Image: Scene Renderer Image: Piloted Car Actuator	LEFT, RIGHT, FRONT, BACK CAMERA INPUTS	NVIDIA Tegra X1 Tegra X1	DRIVE PX SFM SFM Parking Spot Detector Parking Spot Detector Path Planner Parking
PI	LOTED CAR DRIVING INSTRUCTION	5	

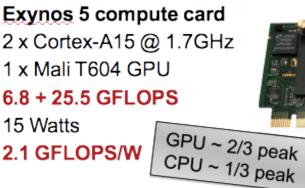
Keartive / deep learning

Nvidia's making a lot of noise about LPGPUs for automotive and deep learning

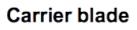
Progress in software: Metal


- Apple has just shaken up the GPU computing space by announcing their <u>Metal</u> API at WWDC in June 2014
- Defines a much lighter weight, higher performance graphics API than OpenGL
- Integrates compute capability with much lower switching overhead than OpenCL/ OpenGL interoperability
- Causing tremendous creative activity within the Khronos community!

For a recent talk I gave on Metal see: http://www.cs.bris.ac.uk/~simonm/publications/ multicore challenge parallel languages Sep 2014.pdf


LPGPU for HPC – Mont Blanc

CPU + GPU + DRAM + storage + network all in a compute card just 8.5 x 5.6 cm



http://www.montblanc-project.eu

15 x Compute cards 485 GFLOPS 1 GbE to 10 GbE 300 Watts 1.6 GFLOPS/W

Rack 6 BullX chassis 54 Compute blades 810 Compute cards 1620 CPU 810 GPU

3.2 TB of DRAM 52 TB of Flash

26 TFLOPS 18 kWatt

Blade chassis 7U

9 x Carrier blade 135 x Compute cards 4.3 TFLOPS 2.7 kWatts 1.6 GFLOPS/W

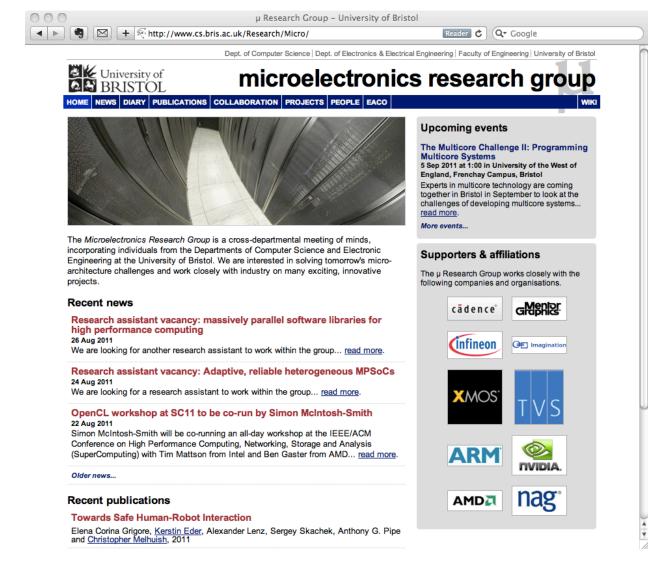
	Mont-Blanc [GFLOPS/W]	Green500 [GFLOPS/W]
Nov 2011	0.15	2.0
Jun 2014	1.5	4.4

MONT-BLANC

KConclusions

- LPGPU is now fast maturing as a field
- Compelling hardware becoming available
- Software ecosystem becoming more vibrant
 - E.g. Oclgrind
- Applications that exploit the available hardware and software are emerging
 - E.g. HDR computational photography, automotive etc
- Increasing competition
 - E.g. Apple's Metal, Khronos glNext
- Lots of challenges remain exciting times ahead!!

KeShameless plug...


- The CFP for the 3rd International Workshop on OpenCL (IWOCL 2015) is open until February 14th
- This year at Stanford University, California May 12-13th

http://www.iwocl.org/

www.cs.bris.ac.uk/Research/Micro

