Think Silicon

Ultra Low Power GPUs for Wearables

Georgios Keramidas January 2015

The Company

Who we are?

CONNECTING SOFTWARE TO SILICON

Think Silicon is a privately held company founded in 2007.

What we do?

Development of **low power GPU** IP semiconductor cores for mobile/embedded devices.

Market

Focus is the broader IoT and specifically the "Wearable" market.

Our Mission

Support and collaborate with our **customers** to create mutual and enduring values in **each phase** of the project.

Engineering Team

70 years cumulative industrial experience

20 Chip Designs

Multidisciplinary Team

IP portfolio

COMPAQ

Patent Pool

40 Publications

Tier1 OEM under NDA

Think Silicon

abile graphics

MARKET EVOLUTION

Think Silicon

These Street

Thick Silicon

Past Decade

Future

Visualize data from various sources (Internet of Things paradigm)

Enabling Technology

Graphics Processing Units (GPUs)

BUT... Power \rightarrow roughly under the same power budget (few hundreds milliwatts)

IoT GPUs: few mWatts (< 3 mW) are devoted to graphics

IoT GPUs need multi-level power optimizations Think Silicon

GPU Challenges

Performance

Time to market

Power consumption

Coming years: Wearable Market

Think Silicon focuses is on the broader "Wearable" market with estimated 700 Million shipped devices in the next five years.

"Worldwide spending on wearable technology will reach \$1.4 billion 2014 and by 2018 is predicted to grow to \$19 billion".

GPU Challenges

Power Consumption

Time to market

Performance

GPU Deadlocks

Porting GPUs from the high-end phones to the Wearables failed

it was reported that at least 30% of the Samsung Gear watches sold by the U.S.-based chain Best Buy were being returned by unsatisfied customers

Application Processor NOW

Market needs SMARTER mobile GPUs

Application Processor FUTURE

Mobile GPUs → Media Processors & GPGPUs Think Silicon

Mobile GPU Challenges

Think Silicon

obile graphics

TECHNOLOGY/ PROPOSITION

Think Silicon

There Second

Thick Silicon

Portfolio

Opportunity

Nema GPU series

Built for the Wearables

- **Power budget** (single-digit milliWatts operations)
- Small Display Sizes (e.g., Smartwatches displays)
 - Software (various "light" OpenGL operations)
 - Available Memory (libs and images)
 - Memory Bandwidth (various types of compression)

Nema series

NEMA has been specifically developed for the WEARABLE market!

First Step

Nema|t, a tiny GPU

OS:RTOS, ucLINUX,API:DirectFB, uGFX, OpenGL|ES1.1Interface:AMBA AXI/AHB

Multicore Architecture:

- VLIW Core (uNema)
 - Multithread, Proprietary ISA
- Ultra low power Rasterizer
- Texture Unit: Cache with software Prefetching, <u>4:1 Texture Compression</u>
- Real-time 6:1 FrameBuffer Compression
- 3D support (z-buffer operations) in software

Application area: Wrist devices (Smart-watch, Medical, Fitness, non Wearable/low power etc.)

First Step

Nema|t – competitive advantage

Extends device (e.g., Smart-watch) battery lifetime up to 5 times!

Compared to the available IoT GPUs Nema|n0

- Delivers more performance/mWatt
- Consumes 4x to 10x less power
- Occupies 4x less silicon area
- Saves 3x power consumption from DDR memory accesses (US patent pending Proprietary Frame buffer compression)
- Reduces SoC to Display data traffic (US patent pending)

Device Power Consumption

Real life scenario

Smart Watch: Display 400x400@ 30fps Processor running @200MHz DDR Memory 512MB Battery: 320mA Battery Typical use case

Device power consumption * = + SoC power consumption + Memory power consumption + SoC to Display traffic

System Level Power Consumption

Nemalt power savings

Device Power Consumption Savings: Nema|t Real life scenario Smartwatch battery life extension: 5 times!

Think Silicon

Nema|GL

Product Nema|GL

What? Multi core, ultra threaded GPU

- **OS:** Linux, Android
- API: OpenGL|ES 3.0
- Toolchain: CLang, LLVM, GLSL-LLVM IR (in-house)

Why?

Low power consumption Extremely small silicon footprint Proprietary Compression

Application area:

Smart Glasses, Head Up Displays, Smart Phones 3rdGen,

Tablets 3Gen, Navigation/Tracking-system.

OpenGL ES

NemaGL – Special Features	
	Product Nema GL + Nema CL
OpenGL ES.	Feature: Compression in
	 Framebuffer Texture data Z-buffer compression
	Feature: DVFS in • Memory-driven core DVFS • Different number of threads/core
	Feature: Faster single thread performance
	 No Divergent Thread performance (inherit by design- MIMD not SIMD) (valuable in GPGPU tasks)
OpenCL	 Compiler driven interlocks

& prefetching

Company Info

HQ

Patras Science Park Rion Achaias Greece 26504

Sales & Marketing

Ulli Mueller Toronto Canada url: www.think-silicon.com

info: info@think-silicon.com

Tel: + 30 2610 911543 Fax: + 30 2610 911544 Tel: + 1 647.824.2006 u.mueller@think-silicon.com

