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Overview
● What is a Scalarization?
● Why are Scalar Operations are common in GPU Kernels?
● Scalarization and Register Allocation
● Scalarization in Conventional GPUs
● Scalarization in GPUs using Temporal SIMT
● Energy and Performance Results
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What is a Scalarization?

– GPUs execute bundles of threads called Warps on SIMD units
– Operation is always the same for all threads and sometimes data matches as well
– This causes redundant operations and storage
– If we can guarantee that the input data of an instruction is always the same, we can 

eliminate this redundancy and save energy and storage space
– We do not to add want to detect this at runtime, but move all the hard work to the 

compiler
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Why are Scalar Operations are common in GPU Kernels?

– Recalculating values often cheaper than sharing them between different threads
– Lots of small calculations do not depend on threadIdx in any way

Example:

– Does not look that Scalar?

int qryid = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
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Why are Scalar Operations are common in GPU Kernels?

Example:

Does not look scalar but actually contains many scalar instructions!

int qryid = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;

cvt.u32.u16 %r1, %ctaid.x;
cvt.u32.u16 %r2, %ntid.x;
mul24.lo.u32 %r3, %r1, %r2;
cvt.u32.u16 %r4, %tid.x;
add.u32 %r5, %r4, %r3;
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How to identify Scalar Instructions?
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How Where to identify Scalar Instructions?

– We do not want to do a complicated anaylsis at runtime.
– We can only reduce the number of registers needed per warp, if we can identify Scalar 

values before we launch the kernel.

– We should analyze Scalarization using as static algorithm.
– Should be done by the CPU: compiler or driver
– Immediate forms such as PTX or SPIR provide enough information

– Here: Implemented as a preprocessing step at the kernel load on PTX in gpgpu-sim.
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How can we identify Scalar instructions?

First step (dataflow): 
1.Optimistically mark all registers as scalar
2.Mark all destination registers of instruction using threadidx or non-scalar values as vector
3.Repeat Step 2. until no new vector registers are found.

This already gets most registers right, but unfortunately there is a second reason, why register 
values could indirectly depend on threadidx: Control Flow
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How can we identify Scalar instructions?

How can we deal with Control Flow and Scalarization?

– Lee et al.: Only scalarize if control flow is convergent.
Correct & simple but suboptimal!

– We can do better, if we consider variable lifetime!
– Control flow does not have to be convergent as long as variable is dead in all other 

flows.

Lee et al. „Convergence and Scalarization for Data-Parallel Architectures“, CGO 2013
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Control flow and Register Lifetime

for (int i=0;i<threadIdx.x;i++) 
{

...
}

– Control flow is different in the different threads of the warp → not convergent
– BUT: i is dead after finishing the loop and i is the same for all threads that have not yet 

reached the reconvergence point at the end of the loop
– We can scalarize i! (Lee et al. cannot!)
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Scalarization and Register Allocation

– Register lifetime is critical for Scalarization!
– Use a static single assignment(SSA) or similar representations for analyzing 

Scalarness.
– When we allocate registers, the register allocation needs to be aware of Scalarization
– Not just register liveness within a single thread is important but liveness within the warp 

also needs to be considered.
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Scalarization and Register Allocation

if (threadIdx.x %2)
{

(…) = a;
} else
{

b=(scalar value);
}

– a and b are never alive at the same time within 
a single thread, but we cannot assign the same 
register to them

Reconvergence Point
a and b dead

a alive,
b dead

a dead,
b alive



 26.5% fewer registers required per warp

Results of the Static Analysis
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Scalarization in AMDs GCN Architecture

Source: AMD

sudo apt-get install aspell-
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Issues with Scalarization in Conventional GPUs

– Scalarization in Conventional GPUs requires many additional hardware structures
• Separate Register Files(RFs) and Execution Units
• Broadcast networks to distribute scalar results to SIMD Units

– Execution Units and RFs can only execute/store Scalar or Vector Instructions/Values
• Idle Execution Units, if Scalar/Vector Unit Ratio does not match code
• Either: Unused Registers in Scalar-RF
• Or: Not all Scalar Values fit in Scalar-RF, cannot fully exploit the potential of 

Scalarization
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Temporal SIMT

– Instead of execution of SIMT code on 
spatial SIMD units,
execute on a single execution unit over 
multiple cycles

– Similar to 1-lane vector processors
– Unused Slots can be skipped
– Use multiple parallel lanes with a 

shared frontend to archive high 
performance
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Temporal SIMT & Scalarization

– Temporal SIMT makes hardware support for 
Scalarization easy!

– No broadcast network needed!
– Scalar and Vector values can be stored in the 

same register file
– Scalar Operations are executed on the same 

ALU as Vector Operations, almost like a warp 
with only one active thread

– Tiny LUT (64-128bit) with one bit per register 
can be used to control scalarness

TSIMT Lane

Lane Register File

Lane Operand Collector

FPU INT SFU BRU LDSTU

Instruction Store Active Mask

Warp Scheduler
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Experimental Setup

– Benchmarks from Rodina, CUDA Toolkit, LPGPU
– gpgpusim 3.2.1 based simulator
– We added support for the TSIMT-based DART architecture to this simulator
– Scalarization Support added to simulator 
– Extended gpusimpow power simulator
– GTX580 based configuration:15 Cores, 8 Lane per Core
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Results – Performance

-   Average Speedup: 1.22X
-   12 Kernels with small or no benefits (~1.0X speedup)
-   17 Kernels with significant benefits (1.1-1.5X speedup)
-   4 Kernels with huge benefits (>1.5-4.2X speedup) 
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Results - Energy
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Conclusions

– Scalarization+Register Allocation should be done together
– Scalarization is easy to implement in TSIMT-based GPUs
– Scalarization has significant power and performance benefits
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