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Overview

* What is a Scalarization?

* Why are Scalar Operations are common in GPU Kernels?
* Scalarization and Register Allocation

* Scalarization in Conventional GPUs

* Scalarization in GPUs using Temporal SIMT

* Energy and Performance Results
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What is a Scalarization?

— GPUs execute bundles of threads called Warps on SIMD units
— Operation is always the same for all threads and sometimes data matches as well
— This causes redundant operations and storage

— If we can guarantee that the input data of an instruction is always the same, we can
eliminate this redundancy and save energy and storage space

— We do not to add want to detect this at runtime, but move all the hard work to the
compiler
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Why are Scalar Operations are common in GPU Kernels?

— Recalculating values often cheaper than sharing them between different threads
— Lots of small calculations do not depend on threadldx in any way

Example:

int gqryid = _ umul24 (blockIdx.x, blockDim.x) + threadIdx.x;
— Does not look that Scalar?
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Why are Scalar Operations are common in GPU Kernels?

Example:
int qryid = umul24 (blockIdx.x, blockDim.x) + threadIdx.x;

Does not look scalar but actually contains many scalar instructions!

cvt.u32.ul6 %$rl, %ctaid.x;
cvt.u32.ul6 %r2, %Sntid.x;
mul24.lo0.u32 %r3, %rl, %r2;
cvt.u32.ul6 %r4, %$tid.x;
add.u32 %r5, %r4d, %r3;
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How to identify Scalar Instructions?
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Hew Where to identify Scalar Instructions?

— We do not want to do a complicated anaylsis at runtime.

— We can only reduce the number of registers needed per warp, if we can identify Scalar
values before we launch the kernel.

— We should analyze Scalarization using as static algorithm.
— Should be done by the CPU: compiler or driver

— Immediate forms such as PTX or SPIR provide enough information

— Here: Implemented as a preprocessing step at the kernel load on PTX in gpgpu-sim.
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How can we identify Scalar instructions?

First step (dataflow):
1. Optimistically mark all registers as scalar
2.Mark all destination registers of instruction using threadidx or non-scalar values as vector
3.Repeat Step 2. until no new vector registers are found.

This already gets most registers right, but unfortunately there is a second reason, why register
values could indirectly depend on threadidx: Control Flow
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How can we identify Scalar instructions?

How can we deal with Control Flow and Scalarization?

— Lee et al.: Only scalarize if control flow is convergent.
Correct & simple but suboptimal!

— We can do better, if we consider variable lifetimel

— Control flow does not have to be convergent as long as variable is dead in all other
flows.

Lee et al. ,Convergence and Scalarization for Data-Parallel Architectures®, CGO 2013
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Control flow and Register Lifetime

for (int i=0ji<threadldx.x;i++)

{
}

— Control flow is different in the different threads of the warp — not convergent

— BUT: i is dead after finishing the loop and i is the same for all threads that have not yet
reached the reconvergence point at the end of the loop

— We can scalarize i! (Lee et al. cannot!)
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Scalarization and Register Allocation

— Register lifetime is critical for Scalarization!

— Use a static single assignment(SSA) or similar representations for analyzing
Scalarness.

— When we allocate registers, the register allocation needs to be aware of Scalarization

— Not just register liveness within a single thread is important but liveness within the warp
also needs to be considered.
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Scalarization and Register Allocation
If (threadldx.x %2)

{
(...) = a;
} else
{ a alive,
b=(scalar value); b dead
}

— a and b are never alive at the same time within
a single thread, but we cannot assign the same
register to them
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a dead,
b alive

~ Reconvergence Point
a and b dead
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@@ Scalar Regs

= 26.5% fewer registers required per warp

Results of the Static Analysis
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Scalarization in AMDs GCN Architecture
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Issues with Scalarization in Conventional GPUs

— Scalarization in Conventional GPUs requires many additional hardware structures
* Separate Register Files(RFs) and Execution Units
* Broadcast networks to distribute scalar results to SIMD Units
— Execution Units and RFs can only execute/store Scalar or Vector Instructions/Values
* |dle Execution Units, if Scalar/Vector Unit Ratio does not match code
* Either: Unused Registers in Scalar-RF

* Or: Not all Scalar Values fit in Scalar-RF, cannot fully exploit the potential of
Scalarization
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Temporal SIMT

— Instead of execution of SIMT code on
spatial SIMD units,

execute on a single execution unit over
multiple cycles

— Similar to 1-lane vector processors
— Unused Slots can be skipped

— Use multiple parallel lanes with a
shared frontend to archive high
performance
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Temporal SIMT & Scalarization

— Temporal SIMT makes hardware support for
Scalarization easy!

— No broadcast network needed!

— Scalar and Vector values can be stored in the
same register file

— Scalar Operations are executed on the same
ALU as Vector Operations, almost like a warp
with only one active thread

— Tiny LUT (64-128bit) with one bit per register
can be used to control scalarness
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Experimental Setup

— Benchmarks from Rodina, CUDA Toolkit, LPGPU

— gpgpusim 3.2.1 based simulator

— We added support for the TSIMT-based DART architecture to this simulator
— Scalarization Support added to simulator

— Extended gpusimpow power simulator

— GTX580 based configuration:15 Cores, 8 Lane per Core
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Results — Performance

IPC Normalized
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Average Speedup: 1.22X

12 Kernels with small or no benefits (~1.0X speedup)
17 Kernels with significant benefits (1.1-1.5X speedup)
4 Kernels with huge benefits (>1.5-4.2X speedup)
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Results - Energy

Power
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Conclusions

— Scalarization+Register Allocation should be done together
— Scalarization is easy to implement in TSIMT-based GPUs
— Scalarization has significant power and performance benefits
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