Technische
Universitat

Scalarization and Temporal SIMT in GPUs:
Reducing Redundant Operations for Better Performance
and Higher Energy Efficiency

Jan Lucas | TU Berlin - AES

nnnnnnnnnnnnnnnnnnnnnnnnnnn

Technische '
Universitat

Berlin

Overview

* What is a Scalarization?

* Why are Scalar Operations are common in GPU Kernels?
* Scalarization and Register Allocation

* Scalarization in Conventional GPUs

* Scalarization in GPUs using Temporal SIMT

* Energy and Performance Results

\ _ B
PEGPUM 2015 | Jan Lucas G P U EE A E S

Page 2 - / Embadded Systams Architecture

Technische .
Universitat

Berlin

What is a Scalarization?

— GPUs execute bundles of threads called Warps on SIMD units
— Operation is always the same for all threads and sometimes data matches as well
— This causes redundant operations and storage

— If we can guarantee that the input data of an instruction is always the same, we can
eliminate this redundancy and save energy and storage space

— We do not to add want to detect this at runtime, but move all the hard work to the
compiler

. AES

ad Systams Archilectu

PEGPUM 2015 | Jan Lucas G I U

Page 3

"" ENER
ll

Technische .
Universitat

Berlin

Why are Scalar Operations are common in GPU Kernels?

— Recalculating values often cheaper than sharing them between different threads
— Lots of small calculations do not depend on threadldx in any way

Example:

int gqryid = _ umul24 (blockIdx.x, blockDim.x) + threadIdx.x;
— Does not look that Scalar?

||
PEGPUM 2015 | Jan Lucas G P U E A E S

Page 4 added Systams Architectura

Technische .
Universitat

Berlin

Why are Scalar Operations are common in GPU Kernels?

Example:
int qryid = umul24 (blockIdx.x, blockDim.x) + threadIdx.x;

Does not look scalar but actually contains many scalar instructions!

cvt.u32.ul6 %$rl, %ctaid.x;
cvt.u32.ul6 %r2, %Sntid.x;
mul24.lo0.u32 %r3, %rl, %r2;
cvt.u32.ul6 %r4, %$tid.x;
add.u32 %r5, %r4d, %r3;

PEGPUM 2015 | Jan Lucas \ LPG PU E: A E S

Page 5 / / Embeadded Systams Architecture

Technische .
Universitat

Berlin

How to identify Scalar Instructions?

PEGPUM 2015 | Jan Lucas : /LPG P U E: A E S

Page 6 Embeadded Systams Architesture

Technische .
Universitat

Berlin

Hew Where to identify Scalar Instructions?

— We do not want to do a complicated anaylsis at runtime.

— We can only reduce the number of registers needed per warp, if we can identify Scalar
values before we launch the kernel.

— We should analyze Scalarization using as static algorithm.
— Should be done by the CPU: compiler or driver

— Immediate forms such as PTX or SPIR provide enough information

— Here: Implemented as a preprocessing step at the kernel load on PTX in gpgpu-sim.

| |
PEGPUM 2015 | Jan Lucas G PU s A E S
- / Embadded Systams Architesturs

Page 7

Technische '
Universitat

Berlin

How can we identify Scalar instructions?

First step (dataflow):
1. Optimistically mark all registers as scalar
2.Mark all destination registers of instruction using threadidx or non-scalar values as vector
3.Repeat Step 2. until no new vector registers are found.

This already gets most registers right, but unfortunately there is a second reason, why register
values could indirectly depend on threadidx: Control Flow

. AES

ad Systams Archilectu

PEGPUM 2015 | Jan Lucas G I U

Page 8

"" ENER
ll

Technische '
Universitat

Berlin

How can we identify Scalar instructions?

How can we deal with Control Flow and Scalarization?

— Lee et al.: Only scalarize if control flow is convergent.
Correct & simple but suboptimal!

— We can do better, if we consider variable lifetimel

— Control flow does not have to be convergent as long as variable is dead in all other
flows.

Lee et al. ,Convergence and Scalarization for Data-Parallel Architectures®, CGO 2013

||
PEGPUM 2015 | Jan Lucas G P U E A E S

Pageg ed Systeams Architectu

Technische '
Universitat

Berlin

Control flow and Register Lifetime

for (int i=0ji<threadldx.x;i++)

{
}

— Control flow is different in the different threads of the warp — not convergent

— BUT: i is dead after finishing the loop and i is the same for all threads that have not yet
reached the reconvergence point at the end of the loop

— We can scalarize i! (Lee et al. cannot!)

\ |]
PEGPUM 2015 | Jan Lucas G PU s A E S
- / Embadded Systams Architesturs

Page 10

Technische '
Universitat

Berlin

Scalarization and Register Allocation

— Register lifetime is critical for Scalarization!

— Use a static single assignment(SSA) or similar representations for analyzing
Scalarness.

— When we allocate registers, the register allocation needs to be aware of Scalarization

— Not just register liveness within a single thread is important but liveness within the warp
also needs to be considered.

||
PEGPUM 2015 | Jan Lucas G P U E A E S

Page 11 added Systeams Architecture

Scalarization and Register Allocation
If (threadldx.x %2)

{
(...) = a;
} else
{ a alive,
b=(scalar value); b dead
}

— a and b are never alive at the same time within
a single thread, but we cannot assign the same
register to them

PEGPUM 2015 | Jan Lucas
Page 12

[|
N J
(| |)
. J A v
§

Technische '
Universitat

Berlin

a dead,
b alive

~ Reconvergence Point
a and b dead

"GPUEAES

dded Systems Archilecture

1/}

Technische
Universitat

1 Vector Regs|
[Scalarization|

Berlin

@@ Scalar Regs

= 26.5% fewer registers required per warp

Results of the Static Analysis

| Im Regs

| Il Conventional

1800

Embadded Systeams Archilecture

GPU:AES

Technische '
Universitat

Berlin

Scalarization in AMDs GCN Architecture

Branch &
MSG Unit

ExportyGDS Decode

== \ector Memory Decode % —r T —
Eym—— L. Scalar Unit SIMDO SIMD1 SIMD2 SIMD3

Decode BKB st CIKB _ 64KB __ ®4KB __ 64KB R/W
Registers = Registers = Registers Registers
Integer ALU - - - = e daig = R/W L2
MP MP MP L1
) b Vector Vector Vector
ALU ALU ALU 16KEB

UONEA}IQIY UonoNnAsu|

{
=
—

©
==
]

-
<TC
—

]
e

L1
L

{
=
1]

=

|
jer—

w
g =

LDS 64 KB LDS Memory

Decode

4 CU Shared 16KEB Scalar Read Only L1
4 CU Shared 32KE Instruction L1

Source: AMD

PEGPUM 2015 | Jan Lucas

Page 14 Embadded Systeams Architectursa

Technische .
Universitat

Berlin

Issues with Scalarization in Conventional GPUs

— Scalarization in Conventional GPUs requires many additional hardware structures
* Separate Register Files(RFs) and Execution Units
* Broadcast networks to distribute scalar results to SIMD Units
— Execution Units and RFs can only execute/store Scalar or Vector Instructions/Values
* |dle Execution Units, if Scalar/Vector Unit Ratio does not match code
* Either: Unused Registers in Scalar-RF

* Or: Not all Scalar Values fit in Scalar-RF, cannot fully exploit the potential of
Scalarization

. AES

ad Systams Archilectu

PEGPUM 2015 | Jan Lucas G I U

Page 15

"" ENER
ll

Temporal SIMT

— Instead of execution of SIMT code on
spatial SIMD units,

execute on a single execution unit over
multiple cycles

— Similar to 1-lane vector processors
— Unused Slots can be skipped

— Use multiple parallel lanes with a
shared frontend to archive high
performance

PEGPUM 2015 | Jan Lucas
Page 16

TIME

SPATIAL SIMT

W2 W2
w3
w4

W5 W5H W5 W5

W7 W7

M — — e e e e —

Technische .
Universitat

Berlin

DART

TR
B Wi w2 wr
v 8 wr
ws
W5
W5

"GPUEAES

dded Systems Archilecture

Temporal SIMT & Scalarization

— Temporal SIMT makes hardware support for
Scalarization easy!

— No broadcast network needed!

— Scalar and Vector values can be stored in the
same register file

— Scalar Operations are executed on the same
ALU as Vector Operations, almost like a warp
with only one active thread

— Tiny LUT (64-128bit) with one bit per register
can be used to control scalarness

PEGPUM 2015 | Jan Lucas
Page 17

Technische .
Universitat

Berlin

Warp Scheduler

TSIMT Lane

o]

Instruction Store

Active Mask ‘

I EEE—————————————————————————

Lane Register File

\

Lane Operand Collector

5

Y

FPU

INT

BRU LDSTU

"GPUEAES

dded Systems Archilecture

Technische '
Universitat

Berlin

Experimental Setup

— Benchmarks from Rodina, CUDA Toolkit, LPGPU

— gpgpusim 3.2.1 based simulator

— We added support for the TSIMT-based DART architecture to this simulator
— Scalarization Support added to simulator

— Extended gpusimpow power simulator

— GTX580 based configuration:15 Cores, 8 Lane per Core

‘]
PEGPUM 2015 | Jan Lucas G P U EE A E S
/ / Er ma Architecturs

Page 18 nbedded Syste

Technische
Universitat
Berlin

Results — Performance

IPC Normalized
NN W
o u o

=
o

Average Speedup: 1.22X

12 Kernels with small or no benefits (~1.0X speedup)
17 Kernels with significant benefits (1.1-1.5X speedup)
4 Kernels with huge benefits (>1.5-4.2X speedup)

||
PEGPUM 2015 | Jan Lucas G P U EE A E S

Page 1 9 / / Embaddad Systams Architectura

1,2

0,8

0,6

0,4

0,2

Results - Energy

Power

PEGPUM 2015 | Jan Lucas
Page 20

Energy

Technische .
Universitat

mTSIMT

Energy*Delay

“rGPU

Berlin

B TSIMT+Scalarization

tAES

Embeadded Systams Archilecturse

Technische .
Universitat

Berlin

Conclusions

— Scalarization+Register Allocation should be done together
— Scalarization is easy to implement in TSIMT-based GPUs
— Scalarization has significant power and performance benefits

||
PEGPUM 2015 | Jan Lucas G P U E

Page 21

AES

edded Systems Architlecture

	TITEL DER PRÄSENTATION ODER THEMA
	Hier steht ein Kurztitel
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Task 7.2: Work Performed in Scalarization (2)
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

