
Scalarization and Temporal SIMT in GPUs:
 Reducing Redundant Operations for Better Performance
 and Higher Energy Efficiency

Jan Lucas | TU Berlin - AES

PEGPUM 2015 | Jan Lucas
Page 2

Overview
● What is a Scalarization?
● Why are Scalar Operations are common in GPU Kernels?
● Scalarization and Register Allocation
● Scalarization in Conventional GPUs
● Scalarization in GPUs using Temporal SIMT
● Energy and Performance Results

PEGPUM 2015 | Jan Lucas
Page 3

What is a Scalarization?

– GPUs execute bundles of threads called Warps on SIMD units
– Operation is always the same for all threads and sometimes data matches as well
– This causes redundant operations and storage
– If we can guarantee that the input data of an instruction is always the same, we can

eliminate this redundancy and save energy and storage space
– We do not to add want to detect this at runtime, but move all the hard work to the

compiler

PEGPUM 2015 | Jan Lucas
Page 4

Why are Scalar Operations are common in GPU Kernels?

– Recalculating values often cheaper than sharing them between different threads
– Lots of small calculations do not depend on threadIdx in any way

Example:

– Does not look that Scalar?

int qryid = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;

PEGPUM 2015 | Jan Lucas
Page 5

Why are Scalar Operations are common in GPU Kernels?

Example:

Does not look scalar but actually contains many scalar instructions!

int qryid = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;

cvt.u32.u16 %r1, %ctaid.x;
cvt.u32.u16 %r2, %ntid.x;
mul24.lo.u32 %r3, %r1, %r2;
cvt.u32.u16 %r4, %tid.x;
add.u32 %r5, %r4, %r3;

PEGPUM 2015 | Jan Lucas
Page 6

How to identify Scalar Instructions?

PEGPUM 2015 | Jan Lucas
Page 7

How Where to identify Scalar Instructions?

– We do not want to do a complicated anaylsis at runtime.
– We can only reduce the number of registers needed per warp, if we can identify Scalar

values before we launch the kernel.

– We should analyze Scalarization using as static algorithm.
– Should be done by the CPU: compiler or driver
– Immediate forms such as PTX or SPIR provide enough information

– Here: Implemented as a preprocessing step at the kernel load on PTX in gpgpu-sim.

PEGPUM 2015 | Jan Lucas
Page 8

How can we identify Scalar instructions?

First step (dataflow):
1.Optimistically mark all registers as scalar
2.Mark all destination registers of instruction using threadidx or non-scalar values as vector
3.Repeat Step 2. until no new vector registers are found.

This already gets most registers right, but unfortunately there is a second reason, why register
values could indirectly depend on threadidx: Control Flow

PEGPUM 2015 | Jan Lucas
Page 9

How can we identify Scalar instructions?

How can we deal with Control Flow and Scalarization?

– Lee et al.: Only scalarize if control flow is convergent.
Correct & simple but suboptimal!

– We can do better, if we consider variable lifetime!
– Control flow does not have to be convergent as long as variable is dead in all other

flows.

Lee et al. „Convergence and Scalarization for Data-Parallel Architectures“, CGO 2013

PEGPUM 2015 | Jan Lucas
Page 10

Control flow and Register Lifetime

for (int i=0;i<threadIdx.x;i++)
{

...
}

– Control flow is different in the different threads of the warp → not convergent
– BUT: i is dead after finishing the loop and i is the same for all threads that have not yet

reached the reconvergence point at the end of the loop
– We can scalarize i! (Lee et al. cannot!)

PEGPUM 2015 | Jan Lucas
Page 11

Scalarization and Register Allocation

– Register lifetime is critical for Scalarization!
– Use a static single assignment(SSA) or similar representations for analyzing

Scalarness.
– When we allocate registers, the register allocation needs to be aware of Scalarization
– Not just register liveness within a single thread is important but liveness within the warp

also needs to be considered.

PEGPUM 2015 | Jan Lucas
Page 12

Scalarization and Register Allocation

if (threadIdx.x %2)
{

(…) = a;
} else
{

b=(scalar value);
}

– a and b are never alive at the same time within
a single thread, but we cannot assign the same
register to them

Reconvergence Point
a and b dead

a alive,
b dead

a dead,
b alive

 26.5% fewer registers required per warp

Results of the Static Analysis

PEGPUM 2015 | Jan Lucas
Page 14

Scalarization in AMDs GCN Architecture

Source: AMD

sudo apt-get install aspell-

PEGPUM 2015 | Jan Lucas
Page 15

Issues with Scalarization in Conventional GPUs

– Scalarization in Conventional GPUs requires many additional hardware structures
• Separate Register Files(RFs) and Execution Units
• Broadcast networks to distribute scalar results to SIMD Units

– Execution Units and RFs can only execute/store Scalar or Vector Instructions/Values
• Idle Execution Units, if Scalar/Vector Unit Ratio does not match code
• Either: Unused Registers in Scalar-RF
• Or: Not all Scalar Values fit in Scalar-RF, cannot fully exploit the potential of

Scalarization

PEGPUM 2015 | Jan Lucas
Page 16

Temporal SIMT

– Instead of execution of SIMT code on
spatial SIMD units,
execute on a single execution unit over
multiple cycles

– Similar to 1-lane vector processors
– Unused Slots can be skipped
– Use multiple parallel lanes with a

shared frontend to archive high
performance

PEGPUM 2015 | Jan Lucas
Page 17

Temporal SIMT & Scalarization

– Temporal SIMT makes hardware support for
Scalarization easy!

– No broadcast network needed!
– Scalar and Vector values can be stored in the

same register file
– Scalar Operations are executed on the same

ALU as Vector Operations, almost like a warp
with only one active thread

– Tiny LUT (64-128bit) with one bit per register
can be used to control scalarness

TSIMT Lane

Lane Register File

Lane Operand Collector

FPU INT SFU BRU LDSTU

Instruction Store Active Mask

Warp Scheduler

PEGPUM 2015 | Jan Lucas
Page 18

Experimental Setup

– Benchmarks from Rodina, CUDA Toolkit, LPGPU
– gpgpusim 3.2.1 based simulator
– We added support for the TSIMT-based DART architecture to this simulator
– Scalarization Support added to simulator
– Extended gpusimpow power simulator
– GTX580 based configuration:15 Cores, 8 Lane per Core

PEGPUM 2015 | Jan Lucas
Page 19

Results – Performance

- Average Speedup: 1.22X
- 12 Kernels with small or no benefits (~1.0X speedup)
- 17 Kernels with significant benefits (1.1-1.5X speedup)
- 4 Kernels with huge benefits (>1.5-4.2X speedup)

PEGPUM 2015 | Jan Lucas
Page 20

Results - Energy

Power Energy Energy*Delay
0

0,2

0,4

0,6

0,8

1

1,2

TSIMT TSIMT+Scalarization

PEGPUM 2015 | Jan Lucas
Page 21

Conclusions

– Scalarization+Register Allocation should be done together
– Scalarization is easy to implement in TSIMT-based GPUs
– Scalarization has significant power and performance benefits

	TITEL DER PRÄSENTATION ODER THEMA
	Hier steht ein Kurztitel
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Task 7.2: Work Performed in Scalarization (2)
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21

