
REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

REPARA: Reeengineering for Heterogeneous
Parallelism for Performance and Energy in

C++

J. Daniel Garcia

Computer Architecture Group.
Universidad Carlos III de Madrid

January 21, 2015

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 1/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

1 Introduction

2 Source code preparation

3 Application partitioning

4 Transformation analysis

5 From attributes to run-time

6 Summary

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 2/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Context

The end for the free-lunch era.

New architectures with diversity in computing elements.
Multi-cores, GPUs, DSPs, FPGAs.

A switch of focus.
From performance centric serial computations, . . .
. . . to energy efficient parallel computations.

Programming heterogeneous parallel architectures:
Lack of unified programming model for diverse devices.
Need to maximize performance and energy efficiency.
Costly development process porting to multiple devices.
Need to modernize existing legacy code bases.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 3/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Context

The end for the free-lunch era.

New architectures with diversity in computing elements.
Multi-cores, GPUs, DSPs, FPGAs.

A switch of focus.
From performance centric serial computations, . . .
. . . to energy efficient parallel computations.

Programming heterogeneous parallel architectures:
Lack of unified programming model for diverse devices.
Need to maximize performance and energy efficiency.
Costly development process porting to multiple devices.
Need to modernize existing legacy code bases.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 3/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Context

The end for the free-lunch era.

New architectures with diversity in computing elements.
Multi-cores, GPUs, DSPs, FPGAs.

A switch of focus.
From performance centric serial computations, . . .
. . . to energy efficient parallel computations.

Programming heterogeneous parallel architectures:
Lack of unified programming model for diverse devices.
Need to maximize performance and energy efficiency.
Costly development process porting to multiple devices.
Need to modernize existing legacy code bases.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 3/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Context

The end for the free-lunch era.

New architectures with diversity in computing elements.
Multi-cores, GPUs, DSPs, FPGAs.

A switch of focus.
From performance centric serial computations, . . .
. . . to energy efficient parallel computations.

Programming heterogeneous parallel architectures:
Lack of unified programming model for diverse devices.
Need to maximize performance and energy efficiency.
Costly development process porting to multiple devices.
Need to modernize existing legacy code bases.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 3/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

The REPARA Vision

Vision

The REPARA project aims to help in the transformation and
deployment of new and legacy applications in parallel
heterogeneous computing architectures while maintaining
balance between:

application performance,
energy efficiency, and
source code maintainability.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 4/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

A workflow for code transformations

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 5/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Problems to be solved (I)

Source code preparation:
Adaptation of legacy code.
Enforcement of C++ subset (REPARA-C++).

Application partitioning:
Describe the target platform.
Map software components to specific computing devices.

Transformation analysis:
Identify transformation opportunities.
Generation of an Abstract Intermediate Representation
(REPARA-AIR).

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 6/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Problems to be solved (I)

Source code preparation:
Adaptation of legacy code.
Enforcement of C++ subset (REPARA-C++).

Application partitioning:
Describe the target platform.
Map software components to specific computing devices.

Transformation analysis:
Identify transformation opportunities.
Generation of an Abstract Intermediate Representation
(REPARA-AIR).

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 6/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Problems to be solved (I)

Source code preparation:
Adaptation of legacy code.
Enforcement of C++ subset (REPARA-C++).

Application partitioning:
Describe the target platform.
Map software components to specific computing devices.

Transformation analysis:
Identify transformation opportunities.
Generation of an Abstract Intermediate Representation
(REPARA-AIR).

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 6/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Problems to be solved (II)

Source code transformation:
Interactive and non-interactive refactoring.
Automated transformation to FPGA.

Runtime engineering:
Coordination of software components (FastFlow).
Manage statically and dynamically partitioned applications.

Continuous evaluation:
Prediction and monitoring of performance and energy.
Evalutation of software maintainability.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 7/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Problems to be solved (II)

Source code transformation:
Interactive and non-interactive refactoring.
Automated transformation to FPGA.

Runtime engineering:
Coordination of software components (FastFlow).
Manage statically and dynamically partitioned applications.

Continuous evaluation:
Prediction and monitoring of performance and energy.
Evalutation of software maintainability.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 7/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Introduction

Problems to be solved (II)

Source code transformation:
Interactive and non-interactive refactoring.
Automated transformation to FPGA.

Runtime engineering:
Coordination of software components (FastFlow).
Manage statically and dynamically partitioned applications.

Continuous evaluation:
Prediction and monitoring of performance and energy.
Evalutation of software maintainability.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 7/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Source code preparation

1 Introduction

2 Source code preparation

3 Application partitioning

4 Transformation analysis

5 From attributes to run-time

6 Summary

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 8/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Source code preparation

Legacy code

C++ is an evolving language, but highly backwards
compatible.

And it has a C subset.

In the context of parallel heterogeneous architectures a
software component may run at:

Host side: Runs at the CPU.
Supports all the ISO C++11 features.

Device side: Runs on device (GPU, FPGA, DSP).
Restricted subset from ISO C++11.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 9/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Source code preparation

Legacy code

C++ is an evolving language, but highly backwards
compatible.

And it has a C subset.

In the context of parallel heterogeneous architectures a
software component may run at:

Host side: Runs at the CPU.
Supports all the ISO C++11 features.

Device side: Runs on device (GPU, FPGA, DSP).
Restricted subset from ISO C++11.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 9/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Source code preparation

GPU: Examples

Forbid the use of bit-fields data members in structures.

Disallow the use of VLAs and flexible array data members.

GPU software components cannot use dynamic type
binding.

virtual member functions.
Virtual inheritance.

Memory management through new/delete cannot be
used.

GPU software components cannot make use of exceptions.

Restricted version of the C++ standard library.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 10/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Source code preparation

FPGA: Examples

System calls are not supported.

Pointer casting is not allowed unless it is between native C
types.

Recursive functions are not allowed.

Arrays of pointers are supported only if each pointer points
to a scalar or array of scalars.

Dynamic memory management is not supported.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 11/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Source code preparation

Cevelop: An IDE for REPARA

http://www.cevelop.com

Based on Eclipse IDE.
Already includes some
refactorings for C/C++
improvement.
Future versions:

Application partitioning.
Transformation analysis.
Source code
transformation.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 12/34

http://www.cevelop.com

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Application partitioning

1 Introduction

2 Source code preparation

3 Application partitioning

4 Transformation analysis

5 From attributes to run-time

6 Summary

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 13/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Application partitioning

Platform descriptions

HPP-DL: A description language to represent all elements
from a parallel heterogeneous platform.

JSON based.

A platform description includes information about hardware
and other platform specific information (e.g. I/O ports,
IRQs, . . .).

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 14/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Application partitioning

HPP-DL: example

{
/∗ Metainformation of HPP−DL ∗/
” class ” : ”hpp”,
” description ” : ” Human readable description ”,
” version ” : ”1.0” ,
” date ” : ” 2014−01−13 10:00”,
” components ”:[
/∗ Definition of harware platform ∗/
{
” class ” : ” platform ” ,
” id ” : ” platform :0” ,
” description ” : ” REPARA Reference System . X9DRG−QF (To be filled by O.E.M.)”,
” model ”: ”X9DRG−QF”,
” vendor ”: ” Supermicro Inc.”,
” numa nodes ”: 2,
” processors ”: 2,
” cores ” : 4,
” pu num ”: 8,
” global mem size ”: ”16 GiB”,
” capabilities ” : []
},
/∗ Definition of processor 0 ∗/
{
” class ” : ” processor ”,
...

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 15/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Application partitioning

Kernel anotations through attributes

Source code can be annotated to identify kernels from an
application.

Many of this annotations can be automatically generated.
May be manually refined.

C++ offers attributes as an alternate to traditional pragmas.

Less verbose annotation mechanism in some situations.
Better integration with language syntax.

Example

[[rpr :: kernel, rpr :: target (CPU,GPU), rpr::in(A,B,n,data), rpr :: out(C)]]
for (int i=0; i<n; ++i)

for (int j=0; j<i; ++j)
C[i] = A[i] ∗ B[j] + data;

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 16/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Application partitioning

Kernel anotations through attributes

Source code can be annotated to identify kernels from an
application.

Many of this annotations can be automatically generated.
May be manually refined.

C++ offers attributes as an alternate to traditional pragmas.

Less verbose annotation mechanism in some situations.
Better integration with language syntax.

Example

[[rpr :: kernel, rpr :: target (CPU,GPU), rpr::in(A,B,n,data), rpr :: out(C)]]
for (int i=0; i<n; ++i)

for (int j=0; j<i; ++j)
C[i] = A[i] ∗ B[j] + data;

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 16/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Application partitioning

Static partitioning

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 17/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Application partitioning

Evaluation: Transitive closure

If

NIf

2If

3If

4If

5If

6If

7If

8If

9If

NIIf

NVI

NIVI

NIIVI

NIIIVI

NIIIIVI

NIIIIIVI

NIIIIIIVI

R
e

la
ti

v
e

(t
im

e
(

in
(p

e
rc

e
n

ta
g

e

A
b

so
lu

te
(t

im
e

(i
n

(l
o

g
(s

ca
le

(S
m

s.

Problem(size(Sbase(size.

Comparison(of(execution(times

ABSUMAX

ABSUVALUE

ABSUMIN

RELUVALUE

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 18/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Transformation analysis

1 Introduction

2 Source code preparation

3 Application partitioning

4 Transformation analysis

5 From attributes to run-time

6 Summary

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 19/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Transformation analysis

Identifying opportunities

Kernels can be identified:
Manually by the programmer.
By an automated tool.

Identifying a kernel requires:
Identify input and output parameters.
Identify target devices where the kernel is valid.
Identify size parameters.

Additionally:
More sophisticated properties.
Patterns (e.g. pipeline, farm, . . .).

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 20/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Transformation analysis

Identifying opportunities

Kernels can be identified:
Manually by the programmer.
By an automated tool.

Identifying a kernel requires:
Identify input and output parameters.
Identify target devices where the kernel is valid.
Identify size parameters.

Additionally:
More sophisticated properties.
Patterns (e.g. pipeline, farm, . . .).

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 20/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Transformation analysis

An Abstract Intermediate Representation

Transformations of software components to multiple
programming models.

Adopt common strategy in compiler technology: a front-end
and a back-end.

front-end:
Identifies transformation opportunities.
Adds meta-data to original source code.
Generates an abstract intermediate representation.

back-end:
Multiple back-ends to transform to different programming
models.
One additional back-end for FPGA.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 21/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Transformation analysis

An Abstract Intermediate Representation

Transformations of software components to multiple
programming models.

Adopt common strategy in compiler technology: a front-end
and a back-end.

front-end:
Identifies transformation opportunities.
Adds meta-data to original source code.
Generates an abstract intermediate representation.

back-end:
Multiple back-ends to transform to different programming
models.
One additional back-end for FPGA.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 21/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Transformation analysis

An Abstract Intermediate Representation

Transformations of software components to multiple
programming models.

Adopt common strategy in compiler technology: a front-end
and a back-end.

front-end:
Identifies transformation opportunities.
Adds meta-data to original source code.
Generates an abstract intermediate representation.

back-end:
Multiple back-ends to transform to different programming
models.
One additional back-end for FPGA.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 21/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

1 Introduction

2 Source code preparation

3 Application partitioning

4 Transformation analysis

5 From attributes to run-time

6 Summary

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 22/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Simple kernels

int main() {
constexpr size t size a = 256, size b = 32;
std :: vector<long> A(size a), B(size b);

[[rpr :: kernel, rpr :: in (A []) , rpr :: out(A []) , rpr :: target (CPU)]]
for (size t i=0; i<A.size(); ++i)

A[i] = F(i) ;

[[rpr :: kernel, rpr :: in (B []) , rpr :: out(B []) , rpr :: target (CPU)]]
for (size t i=0; i<B.size(); ++i)

B[i] = G(i) ;

[[rpr :: kernel, rpr :: in (A [], B []) , rpr :: out(x) , rpr :: target (CPU)]]
long x = H(A,B);

std :: cout << x << std::endl;
return 0;
}

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 23/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Transformation of simple kernels

int main() {
constexpr size t size a = 256, size b = 32;
std :: vector<long> A(size a), B(size b);

ff :: ParallelFor pf ;
pf . parallel for (0, A.size() , [&A](long i) {

A[i] = F(i) ;
}) ;

pf . parallel for (0, B.size() , [&B](long i) {
B[i] = G(i) ;
}) ;

long x = H(A,B);
std :: cout << x << std::endl;
return 0;
}

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 24/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Matrix Vector multiplication

int main() {
vector<float> M(16∗1024), V(1024), R(16);

[[rpr :: kernel, rpr :: out(M[16∗1024]), rpr:: target (CPU)]]
for (size t i=0; i<16; ++i)

for (size t j=0; j<1024; ++j)
M[i∗1024+j] = static cast<float>(i∗1024+j+1);

[[rpr :: kernel, rpr :: out(V[1024]), rpr :: target (CPU)]]
for (size t i=0; i<1024; ++i) V[j]=1.0;

[[rpr :: kernel, rpr :: in (M[16∗1024], V[1024]), rpr::out(R[16]), rpr :: target (GPU)]]
for (size t i=0; i<16; ++i) {

float sum = 0.0;
for (size t j=0; j<1024; ++j)

sum += M[i∗1024+j] ∗ V[j];
R[i] = sum;
}

print result (R,16);
}

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 25/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Pipelines

...
[[rpr :: pipeline , rpr :: stream(B,C)]]
for (size t y=0; y<MAX; ++y) {

[[rpr :: kernel, rpr :: out(B [])]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
B[i∗N + j] = y + float{ i+j};

[[rpr :: kernel, rpr :: in (B []) , rpr :: out(C[])]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
for (size t k=0; j<N; ++k)

C[i∗N+j] = A[i∗N+k] ∗ B[k∗N+j]

[[rpr :: kernel, rpr :: in (C[]) , rpr :: out(R[])]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
R[i∗N+j] = C[j∗N+i]

}
...

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 26/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Farm

[[rpr :: pipeline , rpr :: stream(B,C)]]
for (size t y=0; y<MAX; ++y) {

[[rpr :: kernel, rpr :: out(B []) , rpr :: farm(2)]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
B[i∗N + j] = y + float{ i+j};

[[rpr :: kernel, rpr :: in (A [], B []) , rpr :: out(C[]) , rpr :: farm()]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
for (size t k=0; j<N; ++k)

C[i∗N+j] = A[i∗N+k] ∗ B[k∗N+j]

[[rpr :: kernel, rpr :: in (C[]) , rpr :: out(R[])]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
R[i∗N+j] = C[j∗N+i]

}

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 27/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Map

[[rpr :: pipeline , rpr :: stream(B,C)]]
for (size t y=0; y<MAX; ++y) {

[[rpr :: kernel, rpr :: out(B []) , rpr :: map(2)]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
B[i∗N + j] = y + float{ i+j};

[[rpr :: kernel, rpr :: in (A [], B []) , rpr :: out(C[]) , rpr :: map()]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
for (size t k=0; j<N; ++k)

C[i∗N+j] = A[i∗N+k] ∗ B[k∗N+j]

[[rpr :: kernel, rpr :: in (C[]) , rpr :: out(R[])]]
for (size t i=0; i<N; ++i)

for (size t j=0; j<N; ++j)
R[i∗N+j] = C[j∗N+i]

}

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 28/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Reductions

long r = std :: numeric limits<long>::min();

[[rpr :: kernel, rpr :: in (A []) , rpr :: reduce(max,r)]]
for (size t i=0; i<N; ++i)

r = std :: max(A[i], r) ;

std :: cout << r << std::endl;

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 29/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Asynchronous execution

[[rpr :: kernel, rpr :: async]]
for (size t i=0;i<N; ++i)

for (size t j=0; j<N; ++j) {
A[i∗N+j] = float{ i+j};
B[i∗N+j] = float{abs(j−i)};
}

[[rpr :: kernel, rpr :: async]]
for (size t i=0; i<N; ++i) V[i] = float{ i};

[[rpr :: sync]] ; // Explicit sync

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 30/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

From attributes to run-time

Asynchronous execution

[[rpr :: kernel, rpr :: async]]
for (size t i=0;i<N; ++i)

for (size t j=0; j<N; ++j) {
A[i∗N+j] = float{ i+j};
B[i∗N+j] = float{abs(j−i)};
}

[[rpr :: kernel, rpr :: async]]
for (size t i=0; i<N; ++i) V[i] = float{ i};

[[rpr :: kernel]] // Implicit sync
f () ;

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 31/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Summary

1 Introduction

2 Source code preparation

3 Application partitioning

4 Transformation analysis

5 From attributes to run-time

6 Summary

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 32/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Summary

Summary

Performance, energy efficiency and source code
maitainability need to be balanced.
Legacy code needs to be considered.

Much more legacy code than new code out there.
Refactoring C++ code to:

Enforce specific device rules.
Apply transformations to specific programming models.
Generate FPGA code.

Application partitioning using HW description, kernel
measurements and code.
Transformation combining front-end and back-end.
C++ attributes to enrich code with annotations.

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 33/34

REPARA: Reeengineering for Heterogeneous Parallelism for Performance and Energy in C++

Summary

REPARA: Reeengineering for Heterogeneous
Parallelism for Performance and Energy in

C++

J. Daniel Garcia

Computer Architecture Group.
Universidad Carlos III de Madrid

January 21, 2015

J. Daniel Garcia – ARCOS@UC3M (josedaniel.garcia@uc3m.es) 34/34

	Introduction
	Source code preparation
	Application partitioning
	Transformation analysis
	From attributes to run-time
	Summary

